1. a²-b²= (a+b) (a - b)

2. (a+b)²= a²+2ab+b²

3. (a-b)²= a²-2ab+b²

4. (a+b)³ = a³+3ab(a+b)+b² Or a³+3a²b+3ab²+b²

5. (a-b)³= a³-3ab(a - b) - b³ Or a³ - 3a²b+3ab²-b³

6. a³+b³ = (a + b) (a²-ab+b²) Or (a + b)³ - 3ab (a + b)

7. a³-b³ = (a - b) (a²+ab+b²) Or (a - b)³ + 3ab (a - b)

8. (a+b+c)²= a²+b²+c²+2ab+2be+2ca Or a²+b²+c² + 2ab + 2be + 2ca

9. (-a-b-c)²= a²+b²+c²+2ab+2bc+2ca Or a²+b²+c² + 2(ab + be + ca)

10. a³+b³+c³-3abc = (a + b + c) (a² + b²+c² - ab - bc - ca)

11. (x+a) (x+b) = x²+(a+b) x+ab

12. (x+a) (x + b) (x+c)=x³+(a+b+c) x² + (ab + be + ca) x + abc

13. aᵐ x aⁿ = aᵐ+ⁿ

14. aᵐ ÷ aⁿ = aᵐ-ⁿ

15. a⁻ⁿ = 1/aⁿ

16. 1/a⁻ⁿ = aⁿ

17. LSA of a cuboid = 2h (l + b)

18. TSA of a cuboid = 2 (lb + bh + hl)

19. Volume of a cuboid = l.b.h

20. Diagonal of a cuboid = √(l² + b² + h²) ̅

21. LSA of a cube = 4a²

22. TSA of a cube = 6a²

23. Volume of a cube = a³

24. Diagonal of a cube = a√3 or √3.a

25. CSA of a cylinder = 2πrh

26. TSA of a cylinder = 2πr(h + r)

27. Volume of a cylinder = πr²h

28. CSA of a cone = πrl

29. TSA of a cone = πr(l + r)

30. Volume of a cone = 1/3 πr²h

31. CSA of a sphere = 4πr²

32. TSA of a sphere = 4πr²

33. Volume of a sphere = 4/3πr³

34. CSA of a hemisphere = 2πr²

35. TSA of a hemisphere = 3πr²

36. Volume of a hemisphere = 2/3πr³

37. LSA of a hollow cylinder = 2πh(R + r)

38. TSA of a hollow cylinder = 2πh(R + r) (h + R - r)

39. Volume of a hollow cylinder = πh (R² - r²)

40. Volume of a hollow sphere = 4/3 π(R³ - r³)

41. Volume of a hollow hemisphere = 2/3 π(R³ - r³)

42. Area (right triangle) = 1/2 × b × h

43. Area (isosceles triangle) = 1/2 × b × h

44. Area (equilateral triangle) = √3/4 × a²

45. Height (equilateral triangle) = √3/2 × a

46. Area (parallelogram) = bh

47. Area (rectangle) = lb

48. Area (Rhombus) = 1/2 × d₁ × d₂

49. Area (Square) = a²

50. Area (quadrilateral) = 1/2 × d(h₁ + h₂)

51. Area (trapezium) = 1/2 × h (a + b)

52. Perimeter (parallelogram) = 2 (l + b)

53. Perimeter (rectangle) = 2(l + b)

54. Perimeter (rhombus) = 4a

55. Perimeter (square) = 4a

56. Perimeter (equilateral triangle) = 3a

57. Diagonal (square) = √2 × a

58. Each interior angle (polygon) = ((2n-4))/n 90°

59. Each exterior angle (polygon) = 360°/ n

60. Sum of all interior angles (polygon) = (2n-4) 90°

61. Sum of all exterior angles (polygon) = 360°

62. Number of diagonals (polygon) = n(n-3) / 2

63. Area (circle) = πr²

64. Area (Semi-circle) = πr²/2

65. Area (quadrant of a circle) = πr²/4

66. Perimeter (circle) = 2πr

67. Perimeter (semi-circle) = 36/7 x r

68. Perimeter (quadrant of a circle) = 25/7 x r

69. 1km = 1000m.

70. 1m = 100cm.

71. 1cm = 10mm.

72. 1dm = 10cm.

73. 1hectare = 10,000 m².

74. 1m³ = 1000 litres.

75. 1litre = 1000cm³.

76. Standard form of a linear equation in one variable is ax + b = 0

77. Standard form of a linear equation in two variables is ax + by + c = 0

78. Standard form of a quadratic equation is ax² + bx + c = 0

79. Standard form of a cubic polynomial is f(x) = ax³ + bx² + ex + d

80. Standard form of an even number is 2x

81. Standard form of an odd number is 2x + 1

82. Standard form of an integer is x

83. Standard form of a fraction is x/y

84. Standard form of a two digit number is.xy (10x+y)

85. Standard form of two consecutive even numbers are 2x, 2x + 2

86. Standard form of two consecutive odd numbers are 2x - 1, 2x + 1

87. Standard form of three consecutive numbers are x - 1, x, x + 1

88. Standard form of two consecutive multiples of 3 are 3x, 3x + 3

89. Formula to find a quadratic polynomial is f(x) = k[x² - (α + β)x + αβ]

90. Formula to find a cubic polynomial is

  f(x) = k [x³ - (α + β + γ)x² + (αβ + βγ + γα) x - αβγ]

91. SI = PRT / 100

92. CI = Amount – principle

93. Amount = P(1+ R/100)

94. Loss = CP - SP

95. Loss % = L/CP x 100

96. Profit = SP - CP

97. Loss % = P/CP x 100

98. SP (in case of loss) = ((100-L%))/100 CP

99. SP (in case of profit) = ((100+P%))/100 CP

100. CP(in case of loss) = (100 X SP)/((100-L%))

101. CP(in case of Profit) = (100 X SP)/(100+P%)

102. α+ β = -b/a

103. αβ = c/a

104. α β γ= -d/a

105. α+ β + γ = -b/a

106. αβ + βγ + γα = c/a

107. Sin0° = 0

108. Cos0° = 1

109. Tan0° = 0

110. Sec0° = 1

111. Cot0° = ∞

112. Sin30° = 1/2

113. Cos30° = √3/2

114. Tan30° = 1/√3

115. Cosec30° = 2

116. Sec30° = 2/√3

117. Cot30° = √3

118. Sin60° = √3/2

119. Cos60° = ½

120. Tan60° = √3 121. Cosec60° = 2/√3 122. Sec60° = 2

TRIGNOMETRIC IDENTITIES

179. Sin²θ + Cos²θ = 1

180. Sin²θ = 1 - Cos²θ

181. Sinθ = √(1 - Cos²θ) ̅

182. Cos²θ = 1 - Sin²θ

183. Cosθ = √(1 - Sin²θ) ̅

184. Sec²θ - Tan²θ = 1

185. Sec²θ = 1 + Tan²θ

186. Secθ = √(1 + Tan²θ) ̅

187. Tan²θ = Sec²θ - 1

188. Tanθ = √(Sec²θ - 1) ̅

189. (Secθ + Tanθ) (Secθ - Tanθ) = 1

190. Tan²θ - Sec²θ = -1

191. (Tanθ + Secθ) (Tanθ - Secθ) = -1

192. Cosec²θ - Cot²θ = 1

193. Cosec²θ = 1 + Cot²θ

194. Cosecθ = √(1 + cot²θ) ̅

195. Cot²θ = Cosec²θ - 1

196. Cotθ = √(Cosec²θ - 1) ̅

197. (Cosecθ + Cotθ) (Cosecθ - Cotθ) = 1

198. Cot²θ - Cosec²θ = -1

199. (Cotθ + Cosecθ) (Cotθ - Cosecθ) = -1

200. Additive Identity = 0 201. Multiplicative Identity = 1

202. Additive Inverse of -2/3 = 2/3 203. Multiplicative Inverse of -2/3 = -3/2

204. C = 100 205. L = 50 206. M = 1000 207. D = 500

208. Least composite number = 4 209. Least prime number = 2

210. Least even number = 2 211. Least whole number = 0

212. Least natural number = 1 213. Least odd number = 1

214. Marked price (MP)= (100 X SP)/(100-D%) 215. Discount % = D/MP X 100

All the best

* * * * * * *