CLASS 11 WORK AND ENERGY

CLASS 11 WORK AND ENERGY

WORK AND ENERGY

            Fx = Fcosθ
      Let P acting on a body & displacement occurs in Horizontally.
               W = F . d Unit: Joules or Nm
               W = fd cosθ Dimensions: ML²T⁻²
                  → It is a scalar quantity
                  → It may be +ve, -ve or zero
         1) Positive Work Done:-
                 If θ ≤ θ < 90°
                 then cosθ > 0
                 So, w = fd is +ve
 ❈ When force & displacement are in same direction then work is +ve
                θ = 0°
                Wmax = fd
         2) Zero work: -
                 ❈ When θ = 90° the F & d are ⊥ to each other
                    W = fd cos 90°
                     W = 0
         3) Negative Work :-
                 ❈ When direction of force & displacement are opposite to each other. then work is +ve.
                        W= -fd
                 Examples:-
                      ① work done by frictional force
                      ② work done against gravity.
 NOTE:-
           Let F= f₁î+f₂ĵ+f₃k.
                d=d₁î+d₂ĵ+d₃k
                 W = F.d
                 W = f₁d₁ + f₂d₂ + f₃d₃
NOTE:-
           A= a₁î+a₂ĵ+a₃k, B=b₁î+b₂ĵ+b₃k
               d = B - A
           d = (b₁-a₁)î + (b₂-a₂)ĵ + (b₃-a₃)k
                 ∴ W = F.d
WORK DONE BY VARIABLE FORCE:-
           Let f(x) is a variable then work done by this force from
               x=a to x=b
             W = ∫[a to b] f(x) dx
POWER:
          Rate of doing work by a body is called power.
             Power = Work / Time
          P = W / t Unit is Joules/sec or Watts.
EFFICIENCY:
          It to ratio of output power & input power.
                 η = (P₀ / Pᵢ) x 100
ENERGY:
          It is defined as the ability of a body to do work.
             (A) Potential Energy: It is the energy possessed by a body due to its particular position.
                       Force due to Gravity
                             F = mg
                      : Work done to life a body of mass ‘m’ up to height ‘h’
                               W = f x d
                               W = mgh
                      This work is stored in the form of PE.
                           :. u = mgh Joules
  • KINETIC ENERGY :-
           It is the energy possessed by a body due to its motion let a body of mass m is moving with velocity v then KE = ½ mv² Joules
                 Proof :- let dw work is done in dx displacement
                               :. dθ = fdx
                                   = m dv/dt.dx
                                   = mdv (dx/dt)
                                  ∫ dw = ∫ mv.dv
                                  w-0 = m (v²/2)ᵤᵥ [u=0]
                                   KE = ½ mv²
WORK ENERGY THEOREM :-
          It states that amount of work done is always equal to the change in KE of the body
            :. work = change in KE
                  W=Kf-Ki
          Proof :- let dw work is done in dx displacement
                  :. dw=fdx
                       = m dv/dt.dx
                       v = mdv (dx/dt)
                      ∫ dw = ∫ mv.dv
                    w-0 = m(v²/2)uv => w=½ m (v²-u²)
                       = ½ mv²-½ mu²
             NOTE:- KE can't be negative.
 ❂ CONSERVATION OF ENERGY ->
             It states that in freefall, sum of all energies at every point remain conserved.
                     Case1: Let an object of mass m is placed at 'h' height
                                              PE=mgh
                                              KE=0
                                     Total Energy = mgh + 0
                                            = mgh ①
                                     At point B :-
                                           PE = mg (h-x)
                                                   v² = u²+2ax
                                                   v² = 0 + 2gx
                                              :.KE = ½ m 2gx
                                                       = mgx
                                    Total Energy = mgn + mg(h-x)
                                                      = mgh + mgh - mgx
                                                           = mgh
                                     At Point C:- h = 0
                                                         PE = mgh
                                                         PE = 0
                                                 Now, v² = u² + 2as
                                                        v² = 0 + 2gh
                                                         v² = 2gh
                                                    :.KE = ½ mv²    
                                                            = ½ m x 2gh   
                                              Total energy = mgh        
                              It shows that Total Energy always remain conserved.

RESTORING FORCE :-
 ➤ It is an induced force which bring the body in its initial state of rest
                   i.e f ∝ -x
                    F = -kx
           Here k is spring constant. S.I unit = N/m k = -f/x
 ➤ Depend upon the nature of material of spring
 ➤ Depend upon length & thickness.

ENERGY STORED IN STRETCHED SPRING :-
              Let dw work is done to displace the spring by dx against restoring force
                    :.dw = -fdx
                    :.dw = -(-kx) dx
                     dw = kx.dx
              Integrate both sides
                    ∫dw = k ∫xdx
                     W = k. x²/2
                     W = ½ kx²
              This work is stored in the form of energy
                      U = ½ kx² Joules
    ✤ VARIATION IN ENERGY:-
                     E= 1/2 kx²
                     E ∝ x²
    ❆ COLLISION:-
              When a body strike to another body & exert forces on it , then it is called Collision.
                               
                                               BEFORE                                      AFTER
                                                                    U₁ > U₂
        TYPES OF COLLISION:-
                     ① Elastic Collision:-
                                       In this type of collision
                                               ① Momentum remain conserved of the entire system.
                                               ② K-E remain constant.
                                               ③ Total energy conserved.
                                       Velocity of a body after collision (elastic) :-
                                            
                                                      Before                                               After
                                        In elastic Collision
                                               Momentum before Collision = Momentum after collision
                                                     m₁U₁+ m₂U₂ = m₁V₁+ m₂V₂
                                                     m₁(U₁-V₁) = m₂ (V₂-U₂) ①
                               KE is always constant
                                             ½ m₁u² + ½ m₂u² = ½ m₁v² + ½ m₂v²
                                             m₁(U² - V²) = m₂ (V₂² - U₂²) ②
                                            ②/①
                                                     U₁+V₁ = U₂+V₂
                                                         U₁ - U₂+V₁ = V₂
                                            Putting in ①
                                                 m₁U₁+ m₂U₂ = m₁V₁+ m₂V₂
                                                 m₁U₁-m₁V₁ = m₂(U₁-V₂ + V₁) - m₂V₂
     m₁U₁ - m₁V₁ = m₂U₁ -2m₂U₂+ m₂V₁
     (m₁-m₂)U₁+ 2m₂U₂ = (m₁+m₂)V₁
    V₁ = (m₁-m₂)/ m₁+m₂ . U₁+ 2m₂U₂/ m₁+m₂
    V₂ = (m₂-m₁)/ m₁+m₂ . U₂ + 2m₁U₁/ m₁+m₂
 ❆ Inelastic Collision :-
    In this collision
   ① Momentum remain Conserved.
   ② K-E does not remain Constant.
   ③ Total energy remain Conserved.
 ❈ COEFFICIENT OF RESTITUTION :-
              It defined as the ratio of relative velocity after collision & relative velocity before collision.
      e = V₂-V₁ / U₁-U₂
            1) For elastic collision, e=1
            2) For inelastic, e=0
                      * If m1=m2=m(let)
                        V1 = (m1-m2)U1/m1+m2+ 2m2U2/m1+m2
                             = (m-m)U1/m+m + 2mU2/2m
                          V1 = 0+U2
                         V1 = U2 & V2 = U1
            For Elastic KE e=1 Between-three Collision Conserved atoms
                            For inelastic KE 0
                                    Collision Non-conserved objects
                                    Perfect No loss in e=0 In shooting elastic KE
                                    Super Increase e>1 In explosions
                            Elastic in KE

INELASTIC COLLISION :-
          In this type of collision momentum always remain conserved & After collision two bodies moves with each other.
          Momentum after Collision = m1U1 + m2U2
              Let they move with Velocity V
                      Momentum after Collision = (m1+m2)V
                      By Conservation of momentum
                            (m1+m2)V = m1U1+ m2U2
Collision in 2D :-
          let two bodies of masses m1 & m2 are collided as shown in figure
              Horizontal Momentum
                    M1u + m2x0 = m1v1cosθ1+m2v2cosθ2
                    M1u = m1v1cosθ1+m2v2cosθ2
              & for Vertical Momentum
                     m1v1sin θ1 = m2v2sin θ2
                Conservative force = -ve of Potential energy

* * * * * * * * * * * * * * * * * *