CLASS 11 KINETIC THEORY OF GASES

CLASS 11 KINETIC THEORY OF GASES

KINETIC THEORY OF GASES

ASSUMPTIONS
        1) Particles (molecules/atoms) of a gas always remain in motion in all possible direction.
        2) Collision of particles is elastic i.e. energy in collision remain constant.
        3) Particles of a Gas do not apply a force attraction or repulsion.
        4) Size of particle is zero as compare to distance b/w them.
PRESSURE EXERTED BY GASONTHE WALL OF CONTAINER
                Let a Container is filled with Gas of mass
                    M & Volume=V
                Let no. a molecule per unit Volume = n
                Let mass of each atom be m. Let any instant
                    A(Vx, Vy, Vz)
                 For horizontal volume.
                            momentum=mVx
                 Let particle crebound with velocity-Ve
                            :. momentum = -mvx.
                 Change in momentum of atom = -2mvx
                 momentum-transferred to the wall = 2mVx
                                 Volume AXVxt
                 Total volume of atoms molecules) = nAVxt
                 Total momentum transferred to the wall = mVxnAVxt
                                                                               = mnAVx2t
                                                                               = mAVx2t
                 We know Force, F = MAVx2
                 We know P = F/A
                             P = MVx2
                 because Gas particle possessed any velocity along x, y, z axis
                   ✩ We should use ang. Velocity
                             P=MVx2
                    Here ² Vx²+Vy²+22
                    ATQ, that theory of KE
                            Vx²=Vy² =Vz2= avg velocity
                              V2 = 3Vx2    
                          Vx²=1/3V2
                :. Pressure = 1/3 MV2
                         NOTE:- Here V2 is Called r.m.s (c²)
                                       = 1/3 Mc²
                    Pressure per unit Volume:
                               P = 1/3 M/Vc2
                                = 1/3 Pc2
EFFECT OF TEMP. ON PRESSURE
           We know, P=1/3 M/V c2
                 PV = MC2/3
            By Gas eq. PV = nRT
                  RT = Mc2/3
                 => C α √T
                 => C2 α T
Avg. KE aasociated with gas :-
                We know, KE = 1/2 MC²
            KE per unit Volume = 1/2 Mc2/V
                      = 1/3 ρC²
RELATION b/w K.E. & Pressure per unit Volume
          We Know
                P = 1/3 ρC² -①
                &     E = 1/2 ρC² -②
                      ①/②
                 P/E = 2/3
                  P= 2/3 E
                 P= 2/3 E or E = 3/2 P
BOYLE'S LAW:- It stated that at constant temp.
                   PV = Constant;
              We knows P = 1/3 Mc2/V
                   PV= mc2/3
                If temp is constant than e is also constant ( C2 α T)
                      => MC²/3 = Constant
                       ie PV=Constant
                    which is Boyle’s law.
CHARLE's LAW:- It states that at Constant pressure, & temperature is directly proportional to Volume
                We know
                      P = 1/3 Mc²/V
                      PV = mc²/3
                If P=constant
                              Vαc²
                         VαT i.e Charter's law.
GAY-LUSSAC'S LAW :- It states that at constant Volume, the pressure exerted by a given mass of a gas is directly proportional to its absolute                                         temperature, i.e.,
                               P α T
                   We Know -
                             P= 1/3 M V’²/v
                              :. P α V²
                            V² α T :. P α T
AVOGADRO'S LAW:- It states that equal volumes of all Gases under similar Conditions of temperatures & pressure Contain equal no. of molecules.
               We Know-
                     P = 1/3 mV²/v = 1/3 mnV²/v
                              P1 = P2
                    :. 1/3 m1n1V² = 1/3 m2 n2V²
                               m1 n1V²= m2 n2V² -①
               We know –
                         1/2 m1V1² = 1/3 m2V2²
                          m1V1²= m2V2² -②
                           Dividing ①/②
                    we get : n₁ = n₂
                   :. No. of molecules in Gas A = No. of molecules in Gas B

GRAHAM'S LAW OF DIFFUSION: - It states that rate of diffusion of a gas is inversely proportional to square root of density.
   Pressure exerted by gas A ⇒ P₁ = ⅓ρ₁V₁²
   Pressure exerted by gas B ⇒ P₂ = ⅓ρ₂V₂²
  When steady state of diffusion is reached
      P₁ = P₂
    :. ⅓ρ₁V₁² = ⅓ρ₂V₂²
     (V₁/V₂)² = ρ₂/ρ₁
   V₁/V₂ = √ρ₂/ρ₁ (rate of diffusion ∝ r.m.s velocity)
      r₁/r₂ = √ρ₂/ρ₁

Formulas to remember: -
 → Pressure exerted by a Gas , P = ⅓V M vrms², = ⅓ PVrms²
 → Vrms = √3P/ρ
 → Mean K.E per molecule of a gas , E₁ = ⅓ mV² = 3/2 kBT = 3/2 kBT/q
 → Mean k.e. per mole of gas , E = ⅓ M Vrms² = 3/2 RT = 3/2 kBNT/q
 → KE of 1g of a gas = ⅓ vrms² = 3/2 RT/M
 → Avagadro's No. = Molecular Mass / Mass of Molecule, N=M/m

Degree of Freedom:- It represents the number of Independent quantities on Coordinates required the position of a dynamic System.
                       By the Exp. degree of freedom ---
                                f=3N-R Here, N = no. of particles
                                R = Relation b/w gives particles
              * For monoatomic Gas: * For di atomic Gas:-
                                    f=3 f=5
              * For triatomic Gas: For linear For non linear:-
                                    f=7 f=6
                          Energy associated with Gas:-
                                   ① translational
                                   ② Rotational
                                   ③ Vibrational.
LAW OF EQUIPARTITION OF ENERGY:-
                 →   It state that many dynamical system in thermal equilibrium the energy is equally distributed amongst its various degrees of freedom
                       & the energy associate with each degree of freedom Per molecule is ½ KBT, where KB is Boltzmann's constant & T is absolute temp.
                       Average Kinetic energy of per molecule per f= ½ KBT.
                       Where KB= Boltzmann's Constant, T= absolute temp.
                 → Each square term in the total energy expression of a molecule contributes towards one degree of freedom.
                 → A monoatomic gas molecule has only translational kinetic energy 2 = 1/2 m v² + 1/2 m v² + 1/2 mv².
                       So a monoatomic gas molecule has only (translational) degrees of freedom.
AVERAGE, ROOT MEAN SQUARE & MOST PROBABLE SPEED :-
                  Average Speed: It is defined as the arithmetic mean cay the speeds of the molecules of a gas at a given temperature.
                                      V= V₁+V₂+V₃....+V / n
                  By using Marvell distribution law,
                                 V = √8kBT/m = √8RT/m = √8PV/m
                  Root mean square speed: It is defined as the square root of the mean of the squares of the speeds of the individual molecules by Gas
                                 Vrms = √(V₁²+V₂²+V₃².....V / n
                 From Maxwell distribution law,
                             Vrms= √3kBT/m = √3RT/m = √3PV/m
                 Most Probable Speed: It is defined as the speed pressed by the max. no. of molecules in a gas sample at a given temp
                             Vmp= √2Kbt / M = √2RT / M = √2PV / M
                Relations b/w V, Vrms & Vmp
                            Vrms = √3kT/m = 1.73 √kT/m
                            V = √2kT/m = 1.60 √kT/m
        Vmp = √2 kT/m = 1.41 √kT/m
    Ratio Vrms: V: Vmp = 1.73 : 1.60 : 1.4
    Clearly, Vrms > V > Vmp

For Your Knowledge:
      > The laws of equipartition of energy holds good for all degrees of freedom
      > A monoatomic gas molecule has only translational kinetic energy ,
                   KE = ½ mvx² + ½ mvy² + ½ mvz²
      See a monoatomic gas molecule has only three translational degrees of freedom.
      > In addition to KE, a diatomic molecule has two rotational kinetic energies.
                    Et+Er = ½ mvx² + ½ mvy² + ½ Iyωy² + ½ Izωz²
           Here the line joining the two atoms has been taken as X-axis about which there is no rotation . So the degree of freedom of a diatomic molecule is            5, it does not vibrate.
      > Diatomic molecule CO has a mode of vibration even at moderate temp. Its atom vibrate along the interatomic axis & contribute the vibrational energy          form Ev to the total energy.
                    E= Ex+Er+Ev
                        = ½mvx² + ½mvy² + ½mvz² + ½Ixyw² + ½Iyz² + ½kn² + ½kn²
                                   where k is the force constant of the oscillator, η the
                                   Vibrational Coordinate & η= d/dt
                               So, a diatomic molecule has 7 degree of freedom if it vibrates.
      > Each translational & rotational degree of freedom corresponds to one mode of absorption energy & has energy ½kBT. Each vibrational frequency has          two modes of energy (kinetic & potential) with corresponding energy equal in 3x ½kBT - kBT
 ✤ SPECIFIC HEAT
          1) for monoatomic: per degree of freedom    = ½ kBT
                                     Here degree of freedom = 3
                                               U= 3/2 kBT
                                               U= 3/2 RT
                                     we know, du= 3/2 R
               dT
      Cv = 3/2 R
      Cp-Cv=R
      Cp= R+Cv
           = R+ 3/2 R
      Cp= 5/2 R
            2) For diatomic : degree of freedom = 5
                                                  U= 5/2 RT
      Cv= dU/dT
      Cv= 5/2 R
     We know, Cp-Cv=R
      Cp = Cv+R
            = 5/2 R+R
      Cp = 7/2 R
            3) For triatomic : Gas degree of freedom in linear = 7
                                              ∴U = 7/2 RT
                                              Cv= dU/dT
      Cv= 7/2 R
       &
      Cp = 7/2 R+R
      Cp = 9/2 R
            4) For Polyatomic Gas:-
                                     Cv = f/2 R, Cp = (f/2+1) R
                                          γ = 1+2/f
* * * * * * * * * * * * * * * * *