CLASS 11 SYSTEM OF PARTICLES AND ROTATIONAL MOTION

CLASS 11 SYSTEM OF PARTICLES AND ROTATIONAL MOTION

SYSTEM OF PARTICLES & ROTATIONAL MOTION

CENTRE OF MASS :- It is a point inside a body at which total mass of the body is concentrated on suppose to be concentrated.

    Coordinate of C.M:-
                       X = m₁x₁ + m₂x₂ + m₃x₃ / m₁ + m₂ + m₃
                       Y = m₁y₁ + m₂y₂ + m₃y₃ / m₁ + m₂ + m₃
                       ① Rcm = m₁r₁ + m₂r₂ / m₁ + m₂
       ② If Rcm = 0, CM at origin
             m₁r₁ + m₂r₂ = 0
             m₂r₂ = -m₁r₁
             r₂ = -m₁r₁ / m₂
           If m₁ > m₂ r₂ > r₁
          i.e CM always app. the heavier body.
    ③ Equation of CM
          * F = (m₁ + m₂) * d²R / dt²
          * F = M dVcm / dt
         If F = 0 i.e no external force act on the body
              [ Vcm = Constant
(4) Vcm = m₁v₁ + m₂v₂ / m₁+m₂ ← in same direction
                     Vcm = m₁v₁ - m₂v₂ / m₁+m₂ → in opposite direction

TORQUE:-
              T = r f sinθ It is defined as the product of force & perpendicular distance b/w line of action of force & axis of rotation
                                  SI unit - Newton meter
                                  Dimensions: ML2T-2
             Direction of torque is always ⊥ to r & f
                                  T = r X f
             Some Special Cases :-
                  ① If θ = 0°      ② If θ = 90°
                  T = r f sinθ T = r f sin90°
                  T = 0 Tmax = fr
                  Torque in Vector form
                 Let r = r₁î+r₂ĵ+r₃k̂
                    F = f₁î+f₂ĵ+f₃k̂
                  T = r x f
                        T = [■(î&ĵ&k̂@r₁&r₂&r₃@f₁&f₂&f₃)]
                          = î [■(r2&r3@f2&f3)] - ĵ [■(r1&r3@f1&f3)] + k̂ [■(r1&r2@f2&f2)]
                          = î(r₂f₃-r₃f₂) - ĵ(r₁f₃-r₃f₁) + k̂ (r₁f₂-f₁r₂)
    * Relation b/w torque & work:
                Let dw to torque let angular displacement is dθ
                        ∴ dw = T-dθ
        ✤ Relation blw Power & torque :-
              We have
                      dw = Tdt
                  Divide by dt both side
                   Dω/dt = τ.dω/dt
                    [ P = τ.ω ]→ omega
     ❈ Angular Momentum: It is defined as the product of linear momentum & ⊥ distance blw line of action of momentum & ⊥ axis of rotation
                                                   L = rPsino
                                  In vector form    
                                              ∴ τ =r×p Unit is kgm²/s
                                                   Dimensions [ML²T-1]
                                    NOTE :-
                                          * If θ = 90° We know If θ = 0°
                                                  L= rP r = rw L = 0
                                          If p = mv L = mr²ω
                                                  L = mvr    
                         We know, If θ = 0° L = 0
Relation blw angular momentum (L) & torque (τ) :-
            We have, -
                     L=Pr
                      differentiating dL/dt = r.dp/dt
                       dL = r.f
                   dl/dt = τ
                Note: If T=0 then dl/dt =0
                    => L = Constant
              Conservation of angular momentum
                        If T = θ
                   then L1 + L2 + L3 = Constant
                    No of revolution = θ / 2π
                   Angular Speed = V°/r
                     w = V°/r
                      θ = 2πn
        ✤ Torque:-
                     It is defined as the produce of force & ⊥ distance b/w line of action of force & axis of rotation
                     Torque = fx r sin θ
                         T = fr sinθ
                        Slunt: Nm
                    Dimensions: ML²T-2
                       Direction of torque us always ⊥ to r & f
                                 T = r × f
    ✤ SOME SPECIAL CASES:-
               1) If θ=0°          2) If θ=90°
                τ=fr Sinθ          τ= fr Sin90°
                τ=0                  τmax = fr
         Torque in Vector form:-
                   Let r = r₁î+r₂ĵ+r₃k
                    F = f₁î+f₂ĵ+f₃k
                         T = r × F
                        T = [■(î&ĵ&k̂@r₁&r₂&r₃@f₁&f₂&f₃)]
                      = î [■(r2&r3@f2&f3)] - ĵ [■(r1&r3@f1&f3)] + k̂ [■(r1&r2@f1&f2)]
                      = î(r₂f₃-r₃f₂) - ĵ(r₁f₃-r₃f₁) + k̂ (r₁f₂-f₁r₂)

RELATION B/W TORQUE & WORK:-
               Let dw to torque let angular displacement is dθ
                            ∴ [ dw = τ.dθ ]

RELATION B/W POWER & TORQUE:-
                  We have, dw=τdt
                  divide by dt both side.
                      Dw/dt = τ.dω/dt
                       [ P=τ.ω ]
    ANGULAR MOMENTUM :-
             It is defined as the product of linear momentum & ⊥ distance blur line of angular momentum & axis rotation.
                            L = rpsino
            In Vector from
                        :. L = r x P
                            Units K gm²/s
                            Dim [ML²T-¹]
         Note :- If θ = 90° We have, P=mv We know, V=rω
                      L = rp L=mvr L=mr²ω
                     If θ = 0°
                              L=0
RELATION Btw ANGULAR MOMENTUM (L) & TORQUE (τ):-
          We have,
                     L = pr
                    diff. dL/dT = r. dp/dt
                      dL/dt = rf
                      [ dL/dt = τ ]
          NOTE :- If τ = 0 then dL = 0 => L = Constant
Conservation of Angular momentum
              Angular Momentum is constant
              Therefore
                    d/dt(L) = 0
              Then Σ τ = 0 = constant
INERTIA:-
              It is defined as the inherent property by which a body opposes the change of state against direction
                                I = mr²                SI Unit : Kgm²
          -> Inertia depend upon the mass and position of mass
❈      Relation (Torque) (T) Inertia(I) :-
                      We know:- τ = fr
                                    = m(a)r
                                    = m(ar)r
                                    = mr²α
                              [ τ= Iα ]
Relation Between Angular Momentum & Inertia:-
           We know:
         L = fr = mvr = m(ωr)r = mr²ω
         L= mr²ω
         [ L = Iω ]
Relation b/w K.E & Inertia:-
               We Know
                     K.E = ½ mv²
                             = ½ m(ωr)²
                              = ½ mω²r²
                     [ l.e= 1/2 Iω² ]
CONSERVATION OF ANGULAR MOMENTUM:-
           If torque is absent then
                     I₁ω₁ = I₂ω₂
THEOREM OF PARALLEL AXIS:-
            (1) Ixy = IAB+ Mh²
            (ii) Ixy = IAB + M(l/2)²
            = 1/12 Ml² + 1/4 Ml²
            = Ml²+3Ml²
           = 4 Ml² = 1/3 Ml²
            (iii) Ixy = IAB+ MR²
                             = 2MR²

THEOREM OF ⊥ AXIS:-
                     Iy = Ix+ Iz
                    

EQUILIBRIUM OF FORCE
             Anticlockwise torque = f₁ X OA
                
                 Clockwise torque = f₂ X OB
IN EQUILIBRIUM:
     => f₁xOA - f₂xOB = 0
     =>[ f₁xOA - f₂xOB ]
* * * * * * * * * * * * * * * *