CLASS 11 MOTION IN STRAIGHT LINE

CLASS 11 MOTION IN STRAIGHT LINE

MOTION IN A STRAIGHT LINE

* Point of reference:

    → It is a virtual point with regard to describe the position of an object.

* Frame of reference:

    → It is a collection of point of reference.

* Distance:-

    → It is the length of actual path, b/w initial & final position

    → It is a scalar quantity

    → It can't be negative.

* Displacement:

    → It is defined as the shortest distance b/w initial & final position of a body.

    → It is vector quantity

    → It may be +ve, -ve or zero.

* Positive displacement:-

    → If direction of motion & displacement are same

* Zero displacement :

    → When initial & final point coincide each other then it is called zero displacement

                                                * DISTANCE => DISPLACEMENT

                                                Distance = Displacement when motion is in a straight line.

* Speed:-

    → It is defined as the rate of change of distance [ speed = distance / time ]

    → S.I unit is m/s                    → MLT⁻¹

    → It is a scalar quantity        → It can't be negative.

* Average speed :-

        → It is defined as the total distance covered by a body in given time.

                            S_avg= (d_1+ d_2+ ......)/(t_1+ t_2+ ........)

* Velocity :-

        → It is defined as the rate of change of displacement.

                      [ V = Displacement / time ]

                        V = (ds)/t Slunit : m/s

                                   M°LT-1

        → It may bee +ve,-ve or zero.

        → Directional speed is called Velocity.

* Instantaneous Velocity:-

        → It is the velocity(speed) of a body at any particular time.

                    ∴ V ⃗ = lim┬(t→0)⁡〖(du )/dt〗

* Average Velocity :-

        → Let initial velocity of a body is u & final velocity v & final

                  ✥ Avg velocity = u+v / 2

    NOTE:

                     V = BC / AC

                     V= tanθ

* Acceleration:-

        → It is defined as the rate of change of Velocity.

                   Acc. = Change in Velocity / time Slunit: m/s², LT-2

                   a = (v – u) / t or a = dv / dt

* Zero Acceleration :-

        → If velocity of a lady doesn't change with time

* Negative Acceleration

        → When breaks .etc are applied on a moving object then it is called negative acceleration.

EQUATIONS OF MOTION

    1) FIRST EQUATION OF MOTION

            → we know

                  a = dv/dt

                  adt = dv

             => dv = adt

            Integrate both side

                ∫dv = ∫adt

            (V)vu = a(t)t0

            (v - u) = a(t - 0)

             v-u = at

             v = u + at

    2) SECOND EQUATION OF MOTION

            → we know

                 v = dx/dt

               vdt = dx

              dx = vdt

        Integrate both sides

             ∫dx = ∫vdt = ∫0t (uiat)dt

             ∫dx = ∫0t udt + ∫0t at'dt

             (x)s0 = u(t)t0 + a (t2/2)t0

             S-0 = u(t-0) + 1/2a(t2-0)

                 S = ut + 1/2at2

    3) THIRD EQUATION OF MOTION        

            → we know

          a = (dv/dx) * (du/dt)

            a = dv/dx * v

            a dx = vdv

            v dv = a dx

            ∫v dv = a∫dx

        (v2/2)vu = a(x)s0

        1/2(v2-u2) = a(s-0)

            v2-u2 = 2as

        v2 = u2+2as


Distance in nth second :

    We know distance in n seconds,

        Sn = u + 1/2 an² --------- ①

    Distance in (n-1)th second :

        S(n-1) = u(n-1) + 1/2 a(n-1)²

                Sn - Sn-1 = un +1/2 an2 - u(n-1) - 1/2 a(n-1)²

                               = un - un + u + 1/2 an² - 1/2 a(n² - n²)

                               = u + 1/2 a [n² - n²-1 + 2n]

                         Dn  = u + 1/2 a [2n-1]


* Some formulas:

         In Retardation

        ① v = u-at

        ② S = ut - 1/2 at²

        ③ v² = u² - 2as


                At Max height

                     v = 0

                In freefall

                     u = 0

            In Dropping ball

                     u = 0


* RELATIVE SPEED

            Cos α = BC / v2

            BC = v2 x cos α

        In ∆ACO, By PGT

            AD² = AC² + CD²

              = (V₁ + V₂cosα)² + (V₂ sinα)²

              = V₁² + V₂²cos²α + 2V₁V₂cosα + V₂²sin²α

            V² = (V₁)² + (V₂)² + 2V₁V₂ cosα

            V² = (V₁)² + (V₂)² + 2V₁V₂ cos(180 - θ)

              V = √(V₁² + V₂² - 2V₁V₂ cosθ)

        1) If θ = 0°

               => in same direction

               V = √(V₁)² + (V₂)² - 2V₁V₂

               = √(V₁ - V₂)²

                       V = V₁ - V₂

        2) If θ = 180°

                   => in op    posite direction

               V = √(V₁)² + (V₂)² - 2V₁V₂ cos180°

               V = √(V₁² + V₂² + 2V₁V₂

                       V = V₁ + V₂

        3) If θ = 90°

               V = √(V₁)² + (V₂)² - 2V₁V₂ cos90°

               V = √(V₁² + (V₂)²


* * * * * * * * * * * * *