CLASS 11 MOTION IN PLANE

CLASS 11 MOTION IN PLANE


MOTION IN PLANE

                Direction
              (OP)    tail
                Head
        Pronounced as OP Vector
            (1) OP = xi + yj + zk
            (2) Magnitude of Vector:-
                  |OP| = √x² + y² + z²              For eg OP = 2i + j + 2k
                  |OP| = √(2² + 0² + (2)² = √4 + 1 + 4 = √9 = 3 Units

  ✤  SCALAR COMPONENT
                        AB = (x₂-x₁)i + (y₂-y₁)j + (z₂-z₁)k

  TYPES OF VECTOR :
            (1) Unit Vector :- A vector which modulus is one.
                             Example:   A = 1/√3 i + 1/√3 j + 1/√3 k
                                              |A| = √(1/√3)² + (1/√3)² + (1/√3)²
                                                   = √3/3
                                                   = √1
                                                   = 1
                           Let A is any vector then Unit vector along A :
                                           A = A / |A|
                   Example:- Find Unit Vector along A = i + 2j + 2k
                                        |A| = √(1)² + (2)² + (2)² = √9 = 3
                                     ∴ A = i + 2j + 2k/3 [ By formula A = A / |A| ]
                                         A = 1/3 i + 2/3 j + 2/3 k

  (2) Zero Vector:     A vector in which initial & final point are same!
                                  (tail & head Coincide each other)
                                       AA = 0

  (3) Negative of a Vector : If direction of a vector become reverse [ Change by 180° ] but magnitude remain same.

  (4) Collinear Vector:-  Those vector which lies in same line
                        Let a & b any two vectors . If a = λb then a & b are collinear .
                           For example:
                                     a = 2i + 4j + 6k
                                     b = i + 2j + 3k
                                     So a = λb

   (5) Co-Planer Vector :- All Vector should lies in same plane Plane . All resultant forces are zero
                                                        
   (6) Co-initial Vector :- Those vectors which have same initial point
                                                        

ALGEBRA OF VECTOR:-
                     A = a₁i + a₂j + a₃k
                     B = b₁i + b₂j + b₃k
              A+B = (a₁+b₁)i + (a₂+b₂)j + (a₃+b₃)k
          Example:      Unit Vector : A+B/|A+B| = c
                              A = 2i - 3j + 4k
                              B = i + 6j - 2k
                          A+B = 3i + 3j + 2k
         Same in Subtraction Rule
                  SCALAR MULTIPLY :-      A = a₁i + a₂j + a₃k λA = λa₁i + λa₂j + λa₃k
                                                         Example: A = 2i + 3j + 4k 3A = 6i + 9j + 12k

TRIANGLE LAW :-
  It states that when two sides of a Δ are represented by the vectors in some sense of direction then their resultant by 3rd side but opposite in direction.
                               a+b=c
          NOTE :-
                              ① a+b=-c
                              ② a+c=-b
                              ③ b+c=-a

✤ PARALLELOGRAM LAW :-
      when adjacent sides of a llgm are represented by 2 vectors in same direction then their resultant is 3rd side       but in opposite direction.
                             c=a+b
                             a=b-a

REGULAR HEXAGON :-
        
              AD = 2BC
              BE = 2CD
                FC = 2AB


ANALYTICAL ANALYSIS OF VECTOR ADDITION :-
              let two vectors a & b are acting θ angle with each other.
              Let R is the resultant
                             Now |a| = a, |b| = b, |R| = R
              In ΔABC,
                      sinθ = BC/AB
                      AB sinθ = BC
            In ΔOBC, by PGT
                      OB² = OC² + BC²
                      R² = (a+bcosθ)²+(b sinθ)²
                      R² = a² + b²cos²θ + 2abcosθ + b² sin²θ
                      R² = a² + b² + 2ab cosθ
                          R = √a² + b² + 2ab cosθ
            let R makes α with a then
                                    tanα = BC/OC
                              tanα = b sinθ/a+b cosθ

    ✤ RIVER
      Case(1) :     For shortest distance
                           let speed of boat in still
                       water = v₁ & speed of water = v₂
                                So v' = √(v₁²-v₂²)2
                        Time to cross the river
                                t= d/ √(v₁²-v₂²)2
                   :. Angle from the Vertical
                                tanθ = v₂/ √(v₁²-v₂²)2
      Case(2) :     For Shortest time :-    
                          Resultant Velocity = √(v₁²+(v₂)²
                          Time to cross the river
                             t= d/ √(v₁²+(v₂)²
                      Distance from straight Path = v₂.x.t
                            & tanθ = |v2/v1|

RELATIVE VELOCITY OF RAIN W.R.T MOVING MAN :-
                     let velocity of rain = Vr
                     Velocity of man = Vm-Vm
               The man hold an umbrella act θ from vertical to protect him from rain
                            In ΔOAB. By P.C.T
                             OB² = OA² + AB²
                             Vrm² = Vr² + Vm²
                             Vrm = √Vr² + Vm²
                 In ΔOAB
                             tanθ = AB/ OA
                             tanθ = |Vm/Vr|

SCALAR PRODUCT OF TWO VECTORS :
              1. a.b = |a||b|cosθ
              2. cosθ = a.b/|a||b|
              3. If θ=90°, a⊥b
                           a.b = 0
              4. If θ=0°, a||b
                           a.b = |a||b|
                       ∴ a.b = b.a
              5. a.a = |a|²
              6. let a = a₁i+a₂j+a₃k
                       b = b₁i+b₂j+b₃k
                      a.b = a₁b₁+a₂b₂+a₃b₃
               7. Work done by a force F in displacement d
                            W=F.d
               8. Projection of a along b
                           = a.b/|b|
               9. Component of a along b
                          [a.b/|b|].B

VECTOR PRODUCT OF TWO VECTORS :-
          → Let a & b are any two vectors then a×b = |a||b|Sinθ.n
          → It is vector which is always ⊥ to both a & b
                               b×a = |a||b|Sinθ.n
               In general a×b ≠ b×a
                               a×b = -(b×a)
                         |a×b| = |a||b|Sinθ
               If a || to b
                            θ=0°
                         Sinθ = 0
                           a×b = 0
              If θ=90°
                        Sinθ  = 1
                    |a×b| = |a|×|b|
                       * a×a = 0
                   * a = a₁î + a₂j + a₃k
                      b = b₁î + b₂j + b₃k
                   a×b =[■(i&j&k@a1&a2&a3@b1&b2&b3)] = î(a₂b₃-b₂a₃) - j(a₁b₃-b₂a₁) + k(a₁b₂-a₂b₁)

Projectile: when a body goes in air, under the action of gravity only then the body is called projectile.
                Examples: when a stone is thrown in air - then it is called Projectile.

Horizontal Projectile: when a projectile is thrown from some height above ground.
                      Let after 't' time P(x,y). So from horizontal motion
                                   S = ut + 1/2 at²
                                   x = ut + 0
                                   t = x/u - (1)
                      For vertical motion
                                   S = ut + 1/2 gt²
                                   y = 1/2 g(x/u)²
                                   y = 1/2 g x²/ u²
                                  x² = (2u² / g) y
                  It is represent a parabolic path so path of projectile is parabolic.
    ✤Time of Flight: It is the time taken by the projectile in air.
                                    S = ut + 1/2 at²
                                h = 0 + 1/2 gt²
                                     T = √2h/g
        ✤ Range: It is the horizontal distance covered by projectile.
                            S = ut + 1/2 gt², For horizontal
                                 R = ut + 0    
                                      R = ut
                                    R = u √2h/g
        ✤ Velocity: It is the velocity of projectile at any instant.
                                v = √vx² + vy²
                                    & vy = vy + gt
                                     vy = gt
                                 v = √u² + g²t²
                                tan θ = |vy/vx|
                         We know v = u+at
                                    Vx = u + 0
VERTICAL PROJECTILE: when a body is thrown from ground into air & it move under the action of gravity only then it is called vertical Projectile.
                               ux = u cos θ
                               vy = u sin θ
                     Let after 't' time P(x,y) is a point.
                 For horizontal motion For Vertical motion
                             S = ut + 1/2 at² S = uyt + 1/2 at²
                             x = uxt + 1 x 0 y = u sin θ.t - 1/2 gt²
                                 x = ux t
                             x = u cos θ.t y = u sin θ.x - 1/2 g(x/u cos θ)²
                             t = x/u cos θ - (1)
                            y = u sin θ.x/u cos θ - 1/2 g(x²/u² cos² θ)
                            y = x tan θ - x²(g/2u² cos² θ)
                 It is the path of projectile (trajectory). It is parabolic.

Time of Flight: it is the time taken by the projectile in air.
                   Let Time as of flight = T
                   Time of ascent = T/2
                   We know, vy = Uy + ayt
                   At max-height
                                Vy = 0
                            Uy = u sin θ
                                ay = -g
                                t = T/2
                            θ = u sin θ - gT/2
                            T = 2u sin θ / g

Height of Projectile :- It is the maximum vertical displacement of projectile to bind height Sy = Uyt+1/2 ayt²
                               Here Sy=H
                               Uy = USinθ
                                   ay=-g
                                   t=T/2
                        H = USinθ.T/2 - 1/2 g (T/2)²
                           = USinθ (USinθ/g) - 1/2 g (USinθ/g)²
                           = u²Sin²θ/g - u²Sin²θ/2g
                           = u²Sin²θ (1-1/2)
                      H= u²Sin²θ/2g

Range:-     It is the horizontal distance covered by Projectile
                                     S = Uxt + 1/2 axt²
                                      R = Ucosθ.T
                                         = Ucosθ (2Sinθ/g)
                                     R = u²(2Sincosθ)/g
                                      R = u²Sin2θ/g

Velocity:-
                    v = √rx² + ry²
           Now, rx = Ux + axt & ry=Uy + ayt
                    rx = Ucosθ ry = Usinθ - gt
               v = √(ucosθ)² + (Usinθ - gt)²
                  = u²cos²θ + u²Sin²θ + g²t²- 2UgtSinθ
               v = √u²+ g²t²- 2UgtSinθ
           For Max. Range :-
                    Sin2θ = 1
                    Sin2θ = 90°
                    2θ = 90°
                    θ = 45°
              :. Rmax = u²/g
        When angle is given from neutral s
                 (i) In this Case, T= 2u Sin(90-θ)/g
                                  T = 2u cosθ/g
                 (ii) Height :-
                                  H = u²Sin²(90-θ)/2g
                                  H = u²Cos²θ/2g
                 (ii) R = u²Sin2(90-θ)/g
                          = u²Sin(180-2θ)/g
                       R = u²Sin2θ/g

Circular Motion :-
          (i) Angular Displacement :-
                   θ = x/r unit is Radian
          (ii) Angular Velocity :- It is defined as rate of Change of angular displacement
                    ω = θ₂ - θ₁/t unit is Rad/second
                      ω = dθ/dt
          (iii) Relation b/w ω & v
                    We know, θ = s/r
                    Diff. both sides w.r.t t
                         dθ/dt = (1/r)dx/dt
                     Here dθ/dt = ω
                         dx/dt = v
                        ω = 1/r x v => v = rω
    ✤ Angular Acceleration :-
                   It is defined as the rate of change of angular velocity.
                         :: α = W₂ - W₁ / t Rad/sec²
                             ⇒ α = dω/dt
  Relation blw α & linear acceleration (a) :-
           We know
                     v = rω
                 diff w.r.t t
                 dv/dt = r dω/dt
                 Here dv/dt = a
                      dω/dt = α
                    ∴ a = rα
        Let time period of revolution is T
                 ∴ω = 2π/T
                 ω = 2π x ῡ
                     Here ῡ = r.p.s
                     (Rotation per Second)
    Equation of Motion :-
                  ① ω = ω₀ + αt
              ② θ = ω₀t + 1/2 αt²
                  ③ ω² = ω₀² + 2αθ

✤    Centripetal Force :-
              If a body of mass 'm' as revolving round in the circle then ;
                    * Centripetal Force
                             F = mv²/r
                    * Centripetal Acceleration :-
                             We Know P = mv²/r
                                      F = ma
                            On Comparing ac = v²/r
                             We have, ῡ = rω₀
                                  ac = r2ω²/r
                                     ac = rω²

* * * * * * * * * * * * * * *