CLASS 11 LAWS OF MOTION

CLASS 11 LAWS OF MOTION

LAWS OF MOTION


LINEAR MOMENTUM:-
          It is defined as the product of mass (cm) & velocity (V).
                      P = mv
                        Units - Kgms⁻¹
                        Dim - MLT⁻¹
          Direction of momentum is same as that of motion.
          NOTE :-
                    ① If m = constant
                             then pαv
                             P₁/P2 = V₁/V2
                    ② if r = constant
                             the pαm
                             P₁/P2 = m₁/m2
Relation b/w K-E & Momentum :>
               P = mv
               K = ½ mv²
                = m²v²/2m
               K = (mv)²/2m
               K = P²/2m

LAWS OF MOTION:-
          1st LAW :-
                It states that in the absence of any external force, any body does not change its state of rest on state as motion by itself.
                [This also called law of inertia].
          2nd LAW:-
                It states that rate of change of momentum is always equal to the external force applied on the body
                       F=P₂-P₁/ t               F=dp/dt
CONSERVATION OF MOMENTUM:-
          It states that in the absence of external force. Total momentum always remain constant.
            We know,
                           F = dp/dt
                       => If F = 0
                       => dp/dt = 0
                       => P = Constant
                        (Before)          (After)
                    (m₁) + (m₂)      (m1) + (m2)
                     U₁        U₂         v1         v2
                m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
NOTE :-
          Initial momentum              Final momentum
               P₁ = mucosθ                  P2 = -mucosθ
          Change in momentum of the ball = P₂ - P₁
                    = - mucosθ - mucosθ
                    = - 2mucosθ
              momentum transferred to the heat :- +2 mucosθ

IMPULSE :- When a large force is applied on a body for short duration of time then the product of force & time is called impulse.
                           Impulse = Fxt
                                  SI unit : Ns
                            
                     Impulse is area enclosed by a rectangle
Impulse momentum theorem:- It states that impulse is always equals to the change in momentum of the body.
                      i.e Impulse = P₂-P₁
                           I  = mv - mu
                              = m(v-u)
APPARENT WEIGHT:- It's the weight of a body in motion.
                   Case I: let a body of mass 'm' is placed in an elevator then in upward motion with acceleration a
                                              F = R - mg
                                                 = ma = R - mg
                                              R = mg + ma
                                              R = m(g+a)
                   Case II: In downward motion, If elevator is going down with acceleration 'a'
                                          So, F = mg - R
                                                ma = mg - R
                                                R = mg - ma
                                                R = m(g-a)
                   case III: In freefall
                                       a = g
                                      R = m(g-g)
                                       R = 0
                   case IV: If a > g
                                      in this case
                                           R < 0
                             Body will be stuck in b/w the ceiling of elevator.
                              We Know P = mv F = d (mv)/dt
                                                           = m (dv/dt)
                                                            F = ma
SOME SPECIAL CASES:-
           ① If f = Constant
                ma = constant
                a ∝ 1/ mass
           ② If m = Const
                F ∝ a
                V = Constant
    ✤ UNIT OF FORCE :-
               → SI unit is kg m/s²
               → SI unit Newton in MKS system
               → CGS → dyne (gmc m/s²)
               → Gravitational unit : kg f
                     1 kg f = 9.8 Newton
3rd LAW :- It states that every action has equal & opposite reaction.
                        ① Prove that second law is the real Eq of motion.
                     Sol:     Case1 =>     Prog 1st law
                                                       We know by 2nd law
                                                                F = ma
                                                            F=m.dv/dt
                                                   If F = 0
                                                        m dv/dt = 0 ∴ [Which is the first law]
                                                                Here m≠0
    Proof of 3rd law:
              We known
                   F₁ = dp₁/dt
                   dp₁ = f₁·dt -①
                    dp₂ = f₂·dt
          By conservation of Momentum
                    dp₁+dp₂ = 0
                    f₁·dt + f₂·dt = 0
                    dt (F₁ + F₂) = 0
                    F₁ + F₂ = 0
                     F₁ = -F₂
               Which is 3rd law….

  ② Is it easier pull man push
                IN PUSH
                          Let force f is applied on the roller then
                          Apparent Weight = W'=mg+Fsinθ
                          It shows that weight of the roller increases.
                IN PULL
                          If force is applied is PULL the apparent
                           Weight ⇒ W' = mg - Fsinθ
                          i.e height become less. So it is easier pull than push.

   ③ How does horse pull the cart?
                    If horse moves forward, H > T
                            Net force: H-T=ma - ①
                        
                    Cart moves forward, T > f
                            Net force T-f=ma - ②
                    Adding ① & ② H-f= (M+m) a
                             a=H-f/M+m
                              ∴ H > F
                    Hence the cart moves forward….
CONNECTING MOTION:-
               For upward motion
                         F = T-m₁g
                     m₁a = T-m₁g -①
               For Downward motion
                     F = m₂g - T
                     m₂a = m₂g - T -②
               Adding ① & ②
                     m₁a+m₂a = m₂g - m₁g
                     a(m₁+m₂) = g (m₂-m₁)
                     a = g [m₂-m₁/m₂+m₁]
              Now from ①
                    T = m₁a+m₁g
                       = m₁(a+g)
                       = m₁ [m₂-m₁/m₂+m₁]g + g
                       = m₁g [m₂-m₁+1/m₂+m₁]
                       = m₁g [m₂-m₁+m₂+m₁/m₂+m₁]
                    T = 2m₁m₂g/m₁+m₂
            Acceleration force = m₂g
                      a = Force/Mass
                      a = m₂g/m₁+m₂
LAMI'S THEOREM
               In equilibrium state
                           F1/Sin α = F2 /sin ß = F3 / Siny
                2)
                       ①    aco in the system = Force / m1 + m2 + m3
                       ②    T1 = (m2+mg)a
                       ③     T3 = m3a
                3) Let acc in the System = a
                            T1= (m1+m2)(g+a)
                            T2 = m1(g+a)
FRICTIONAL FORCE
                FRICTION
                         It is a self adjusting force which comes in account when external force act on the body.
                                                                            
                Laws of Friction:
                          * Direction of frictional force is always opposite to the motion.
                          * Frictional force is always directly proportional to the normal reaction
                             F α R
                             F= μR
                        Here μ is called coefficient of friction
                        μ = F/R μ is unit less.            
    NOTES: It is depend upon the nature of surface (roughness or smoothness)
           * Force of friction does not depend upon the area of contact b/w two bodies but it depend upon the molecular attraction b/w two surfaces.
    
TYPES OF FRICTION:-
         STATIC FRICTION:- It is the friction which comes In account upon external force act on the body & body's in rest.
                                                           FL > PS > FK

         LIMITING FRICTION:- It is maximum static friction.

         KINETIC FRICTION:- It is the friction when body is in motion.
                                                 (1) F=uR
                                                 ② F=umg
                                                ③ we have by 2nd law
                                                             F=ma
                                                             ma = umg
                                                             a=ug OR u = a/ g
                                               ④
                                                Net Accelerating Force → f' = f-f
 ✤ ANGLE OF FRICTION:-
             It is the angle made by the resultant with normal reaction
                             tanθ = F/R
             We have F/R = u
                              tanθ = u
 ✤ ANGLE OF REPOSE
           It is the minimum angle of inclination also that any body can move without any external force.
                :. mg cosx = R - (1)
                   mg sinx = F - (2)
                     tanx = F/R
           Relation b/w θ & α
                     tanθ = F/R
                     tanα = F/R
                 ∴tanθ = tanα
                          θ = α
ACCELERATION IN A BODY IN AN INCLINED PLANE:-
          Let a body of mass 'm' is placed on an inclined plane at θ
                          ∴ mg cosθ = R - ①
                               & f = mg sinθ - F
                              ma = mg sinθ - μR
                              ma = mg sinθ - μmg cosθ
          IN DOWNWARD MOTION:- a = g (sinθ - μcosθ)
          IN UPWARD MOTION:-
                  In Balancing condition
                       R = mg cosθ - ①
                      F = mg sinθ + f
                      ma = mg sinθ + μR
                      ma = mg sinθ + μmg cosθ
                     a = g (sinθ + μcosθ)
✤ WORK DONE IN A BODY :-
             In Upward motion :
                 We know, W = F x S
                            = m x g x S
                       W = mgs (sinθ + μcosθ)
             In Downward Motion :
                   We know, N = mgs (sinθ - μcosθ)

 ✤ SPEED OF CAR ON A CIRCULAR TRACK TO TAKE SAFE TURN :
            Let a car of mass 'm' is moving with velocity
                    v on a circular track of radius 'r' in this case
                        F = μR Centripetal force in this
                        F = μmg - (1) cases:-
                        F = mv²/r - (2)
                                To Take safe turn
                                     mv²/r ≤ μmg
                                     v² ≤ μrg
                                  v ≤ √μrg
                Maximum Velocity to take safe turn : V = √μrg
BANKING ON ROAD :- It is defined as the phenomenon by which Outer edge of a circular track is made at some height as compare to inner edge to                                         provide centripetal force to take safe turn.
                                                        __ Friction Acting on
                                                                           Banking
                                          Let a body of mass m is taking turn on the banked road with velocity in this case.
                                                   Rcosθ = mg + Fsinθ & Rsinθ + Fcosθ = mv² / r
                                                   Rcosθ - Fsinθ = mg Rsinθ + Rµcosθ = mv² / r
                                                   Rcosθ - uRsinθ = mg R sinθ + Rµcosθ = mv² / r
                                                   R (cosθ - u sinθ) = mg - ① R(sinθ + µcosθ) = mv² / r - ②
                                                       Dividing ② by ①
                                                            ( Sinθ + u cosθ ) / ( cosθ - u sinθ ) = v² / rg
                                                             v² = rg ( Sinθ+ u cosθ )/ cosθ-u sinθ
                                                             v = √( rg (Sinθ + u cosθ ) /cosθ - u sinθ ) - Dividing eq by cosθ
                                                              v = √ rg ( tanθ + u )/ (1- u tanθ)
                         ❈ let width of road = la
                             & height = h
                               OA = √b²-h²
                         :. tanθ = h / √b²-h²
Bending Of Cyclist
         Let a cyclist of mass m is taking turn on a circular track of radius r with velocity V in balancing
         Condition
                       Rcosθ = mg - ①
                      Rsinθ = mv² / r - ②
                  Dividing ② by ①
                       tanθ = v² / rg
MOTION IN A VERTICAL CIRCLE :-
            ① Velocity of the body at any point at a height h from the lowest point :-
                                            v = √u²-2gh
            ② Tension in the string at any point ;
                                        T = m / r ( u²-3gh+gr )
            ③ Tension at lowest point ;
                                        Tʟ = m / r ( u²+gr )
            ④ Tension at the highest point ;
                                        Tʜ = m / r ( u²-5gr )
            ⑤ Difference in tensions at the highest & lowest point
                                        Tʟ - Tʜ = 6mg
            ⑥ Minimum Velocity at the lowest point for looping the vertical loop,
                                        vʟ = √5gr
            ⑦ Velocity at the highest point for looping the loop
                                            vʜ = √gr

* * * * * * * * * * * * * *