COMPLEX NUMBER

COMPLEX NUMBER


COMPLEX NUMBER
✤ Standard form. z = a+ib {I = iota , b = imaginary part}
                                      ↓
                              Real Part
Ex :- z=3+4i
  Here a=3, b=4.
 r = |z| (modulus of complex No.
   = √a²+b²
  Properties of i
  1. i² = -1
  2. i³ = -i
  3. i⁴ = 1
  §.           1. i⁴ᵐ = 1
                2. i⁴ᵐ⁺ⁿ = iⁿ.
                3. 1/i = -i
  Note! when we have to solve higher power of i, we should divide the
        power of i by 4. and use remainder.
     Ex:- i²⁰²⁴ = i⁴ˣ⁵⁰⁶⁺⁰ = i⁰ = 1
 § Conjugate of Complex No is Represented by Z
     If z = a+ib
     then z = a-ib (we have to change the sign of i)
   Prop. of conjugate
     1. |z ̅| = |z ̅|
     2. zz ̅ = |z ̅|²
     3. z₁+z₂ = z ̅₁±z ̅₂
     4. (z ̅₁/z₂) = z ̅₁/z ̅₂
Argument: angle made by complex number with in argant Plane.
     z = a+ib
  Steps to find argument:
   1) find tanθ = |b/a| and find θ.
     (i) If (a,b) ∈ 1st quadrant then argument (α) = θ.
   2) If (a,b) ∈ 2nd then α = π-θ
   3) If (a,b) ∈ 3rd then α = -(π-θ)
   4) If (a,b) ∈ 4yth then α = 2π-θ = -θ.
    Ex z = -1 + i√3.
     Here a=-1, b=√3
     tanθ = |b/a|
      = |√3/-1|
     tanθ = √3
     θ = π/3
    Here
     (a,b) ∈ 2nd then.
      α = π - θ
     α = π - π/3 = 2π/3
  ❈ Polar form of Complex No:
     let z = a+ib is any Complex Number then sets to find Polar
     form
      1 find r = √a²+b².
      2 find argument α
      3 write as r(cosα+isinα)
          Ex z = -1+ i√3
     Here r = √(-1)²+(√3)²
          = √1+3 = 2.
     asin above Example α=2π/3
   So Polar form
     = 2(cos2π/3 + isin2π/3)
  ✤ Solution of Quadratic Equation.
     let ax²+bx+c=0
      If b²-4ac < 0
     roots are complex in number
     i.e in the terms of i
      x = -b ± √b²-4ac/2a
     in square root we use i²
      in the place of -1
      Ex: 1.x²-4x+13 = 0
      Here a=1, b=-4, c=13
     x = 4 ± √(16-4x1x13)/ 2x1
      = 4 ± √(16-52)/2
      = 4 ± √-36/2
      = 4 ± √(-1x36)/2
          x = 4 ± 6i/ 2
          x= 2 ± 3i
Cube root of unity : It is represented by 'w'
    1) w = -1+i√3/2 , w² = -1-i√3/2
    2) 1+w+w²=0
    3) w³=1
* * * * * * * * * * * * * * *