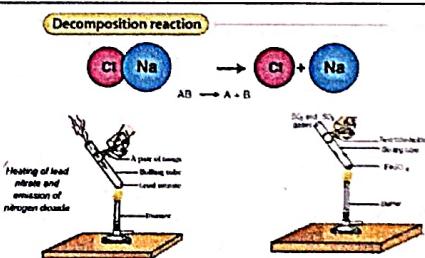
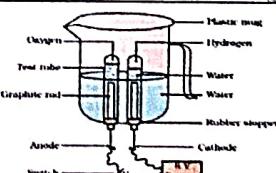


CHAPTER 1

Chemical Reactions and Equations



combine to form a single product.

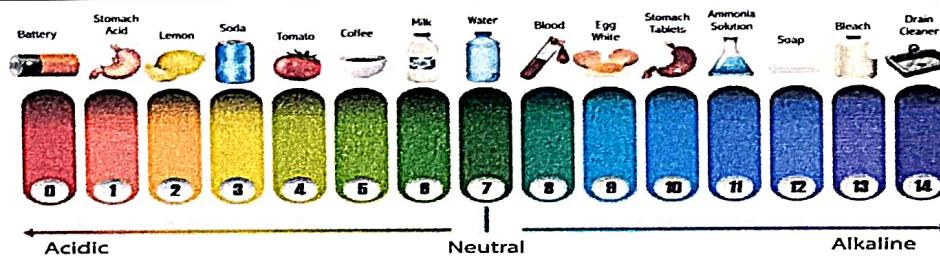

- **Thermal decomposition** : When decomposition is carried out by heating.

e.g.,	(i)	$2\text{FeSO}_4(s) \xrightarrow{\text{Heat}} \text{Fe}_2\text{O}_3(s) + \text{SO}_2(g) + \text{SO}_3(g)$
		(Ferrous sulphate) (Ferric oxide)
		Green colour Red-brown colour
	(ii)	$\text{CaCO}_3(s) \xrightarrow{\text{Heat}} \text{CaO}(s) + \text{CO}_2(g)$
		(Lime stone) (Quick lime)
	(iii)	$2\text{Pb}(\text{NO}_3)_2(s) \xrightarrow{\text{Heat}} 2\text{PbO}(s) + 4\text{NO}_2(g) + \text{O}_2(g)$
		(lead nitrate) (Lead oxide) (Nitrogen dioxide)

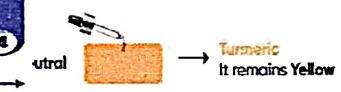
- **Electrolytic Decomposition:** When decomposition is carried out by passing electricity.

$$\text{e.g., } 2\text{H}_2\text{O(l)} \xrightarrow[\text{current}]{\text{Electric}} 2\text{H}_2\text{(g)} + \text{O}_2\text{(g)}$$

Photolytic Decomposition : When decomposition is carried out in presence of sunlight.


CHAPTER 2
Acids, Bases
and Salts

ACID
Properties of Acids:
• Produce hydrogen ions $[H^+]$ in H_2O .
• Sour taste.
• Turn blue litmus red .
• Neutralize solutions carrying hydroxide ions.
• React with <u>several metals releasing</u> <u>Hydrogen gas</u> .
• React with carbonates releasing $CO_2(g)$
• Corrode metal surface quickly.


BASE
Properties of Base:
• Produce hydroxide ions $[OH^-]$ in H_2O .
• Water soluble bases are called alkali.
• Bitter Taste
• Turn Red Litmus blue .
• Neutralize solutions containing H^+ ions.
• Have a slippery, 'soapy' feel.

a) Strong acids: Completely dissociate into their ions in aqueous solutions. Examples: Nitric acid (HNO_3), Sulphuric acid (H_2SO_4), and Hydrochloric acid (HCl).	a) Strong bases: Strong bases are those bases which completely dissociate into their ions in aqueous solutions. Example: Sodium hydroxide ($NaOH$) Potassium hydroxide (KOH)
b) Weak acids: Weak acids are those acids which do not completely dissociate into their ions in aqueous solutions—for example: Carbonic acid (H_2CO_3) and acetic acid (CH_3COOH).	b) Weak bases: Weak bases are those bases which do not completely dissociate into their ions in aqueous solutions. Example: Ammonium hydroxide (NH_4OH)

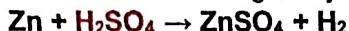
	INDICATORS	COLOUR IN ACID	COLOUR IN BASE
VISUAL INDICATORS 	BLUE LITMUS	Red	Blue
	METHYL ORANGE	Yellow	Red
	PHENOLPHTHALEIN	Yellow	Pink
	RED LITMUS	Red	Blue
OLFACTOORY INDICATORS 		ACID	BASE
	ONION JUICE	RETAINS SMELL	LOSES SMELL
	CLOVE OIL	PUNGENT SMELL	LOSES SMELL
	VANILLA ESSENCE	PUNGENT SMELL	LOSES SMELL

TURMERIC

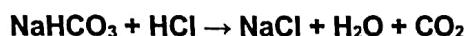
S. No.	Solution	Colour of pH paper	Approximate pH value	Nature of substance
1	Saliva (before meal)	Green	6.8–7.4	Slightly acidic or basic
2	Saliva (after meal)	Yellow green	5.8	Acidic
3	Lemon juice	Orange	2.2	Acidic
4	Colourless aerated drink	Yellow	4.0	Acidic
5	Carrot juice	Yellow green	6.0	Acidic

$pH < 7$ (Acidic Solution $[H_3O^+] > OH^-$)

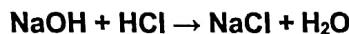
$[H_3O^+ = OH^-]$ $pH > 7$ (Basic Solution $[H_3O^+] < OH^-$)

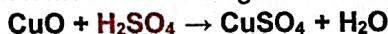

S. No.	Solution	Colour of pH paper	Approximate pH value	Nature of substance
6	Coffee	Yellow	4.5	Acidic
7	Tomato juice	Yellow	4.3	Acidic
8	Tap water	Green	6–8.5	Varied
9	1M NaOH	Dark blue	14	Basic
10	1M HCl	Red	0	Acidic

pH Sensitivity of Plants & Animals:


- The human body works in a narrow range of pH 7 to 7.8. Acidity can be lethal for plants and animals.
- pH of Digestive System:** The stomach secretes HCl to kill bacteria in the food. The inner lining of the stomach protects vital cells from this acidic pH.

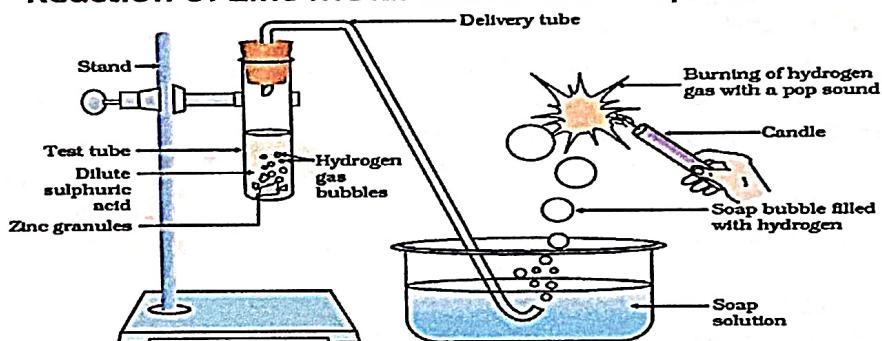
❖ CHEMICAL PROPERTIES OF ACIDS:


- Acids react with active metals to give hydrogen gas.


- Acids react with metal carbonate and hydrogen carbonate to give carbon dioxide.

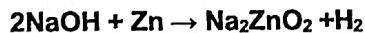
- Acids react with bases to give salt and water. This reaction is called a neutralization reaction.

- Acids react with metal oxides to give salt and water.


pH and tooth decay: Lower pH because sour food and sweet food can cause tooth decay. The pH of the mouth should always be more than 5.5.

pH as a self-defence mechanism in plants & animals: Certain animals like bees and plants like nettle secrete highly acidic substances for self-defence.

❖ Addition of Acids or Bases to Water: The process of dissolving an acid, especially nitric acid or Sulphuric acid or a base in water is a highly exothermic one.


Note: Always add acid to water and never the other way! The acid must be added slowly to water with constant stirring. If one mixes the other way by adding water to a concentrated acid, the heat generated causes the mixture to splash out and cause burns.

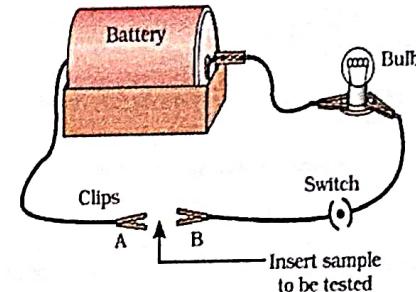
Reaction of Zinc Metal with Dilute Sulphuric Acid

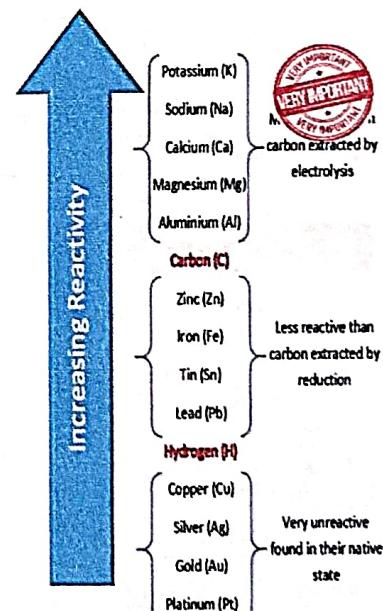
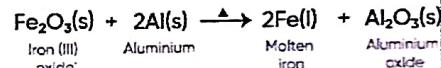
CHEMICAL PROPERTIES OF BASES:

- Reaction with Metals** - Certain reactive metals such as Zinc, Aluminium, and Tin react with alkali solutions on heating and hydrogen gas is evolved.

- Reaction with acids** - Bases react with acids to form salt and water. $\text{KOH} + \text{HCl} \rightarrow \text{KCl} + \text{H}_2\text{O}$

- Reaction with Non-metallic oxides** - These oxides are generally acidic. They react with bases to form salt and water.





Properties	Metal	Non-Metal
Appearance	Shiny	Dull Except Iodine
State at room temperature	Solid (except mercury - liquid)	About half are solids, about half are gases, and one (bromine) is a liquid
Density	High (they feel heavy for their size)	Low (they feel light for their size)
Strength	Strong	Weak
Malleable or brittle	Malleable (they bend without breaking) Except Sodium, Potassium	Brittle (they break or shatter when hammered)
Conduction of heat	Good Except Lead	Poor (they are insulators)
Conduction of electricity	Good	Poor (EXCEPT graphite)
Magnetic material	Only iron, cobalt, and nickel	None
Sound when hit	They make a ringing sound (they are sonorous)	They make a dull sound
Melting and boiling points	Metals generally have high MP and BP except for gallium and caesium.	Non-metals have low MP and BP except diamond and graphite.
Type of oxide	Basic or alkaline	Acidic

❖ Chemical properties of Metals and Non-metals: -

METAL	NON-METAL
REACTION WITH OXYGEN	
Metals form basic oxides	Non-metals form acidic oxides
Metal + Oxygen \rightarrow Metal Oxide	Non-metal + Oxygen \rightarrow Non-metal oxide
$4\text{Na}_{(s)} + \text{O}_{2(g)} \rightarrow 2\text{Na}_2\text{O}_{(s)}$	$\text{C} + \text{O}_2 \rightarrow \text{CO}_2$
$4\text{Al}_{(s)} + 3\text{O}_{2(g)} \rightarrow 2\text{Al}_2\text{O}_{3(s)}$	$\text{S} + \text{O}_2 \rightarrow \text{SO}_2$
<ul style="list-style-type: none"> Zn and Al form amphoteric oxides (they show the properties of both acidic and basic oxides) Most of the metal oxides are insoluble in water. Some of them dissolve to form Alkali $\text{Na}_2\text{O}_{(s)} + \text{H}_2\text{O}_{(l)} \rightarrow 2\text{NaOH}_{(aq)}$ 	<ul style="list-style-type: none"> CO and H_2O are neutral oxides (they are neither acidic nor basic in nature) Non-metal oxides are soluble in water. They dissolve in water to form acids. $\text{SO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_3$
REACTION WITH WATER	
Metals react with water to form metal oxides or metal hydroxide and H_2 gas is released.	Non-metals do not react with water, steam to evolve hydrogen gas.
$2\text{Na}_{(s)} + 2\text{H}_2\text{O}_{(l)} \rightarrow 2\text{NaOH}_{(aq)} + \text{H}_2(g) + \text{Heat}$	

THERMITE REACTION

REACTION WITH DILUTE ACIDS	
Metal + Acid \rightarrow Metal salt + Hydrogen	Non-metals do not react with acids to release H_2 gas
<ul style="list-style-type: none"> With HCl $\text{Mg}_{(s)} + 2\text{HCl}_{(aq)} \rightarrow \text{MgCl}_2(aq) + \text{H}_2(g)$	
<ul style="list-style-type: none"> With H_2SO_4 $2\text{Na}_{(s)} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4(aq) + \text{H}_2(g)$	
<ul style="list-style-type: none"> With HNO_3 $\text{Metal} + \text{HNO}_3 \rightarrow \text{H}_2$ gas is not evolved. Reason- HNO_3 is strong oxidizing agent.	

REACTION WITH SALT SOLUTIONS	
Metals react with salt solution and more reactive metal will displace a less reactive metal from its salt solution – Single displacement reaction.	When non-metals react with salt solution, more reactive non-metal will displace a less reactive non-metal from its salt solution.
$\text{CuSO}_4(aq) + \text{Zn}_{(s)} \rightarrow \text{ZnSO}_4(aq) + \text{Cu}_{(s)}$	$2\text{NaBr}_{(aq)} + \text{Cl}_2(g) \rightarrow 2\text{NaCl}_{(aq)} + \text{Br}_2(g)$

IONIC COMPOUNDS:

- Metals tend to lose electrons to form cations (+).
- Non-metals gain electrons to form anions (-).
- Ionic compounds are formed through the transfer of electrons from metals to non-metals (e.g., NaCl)

Properties of ionic Compounds:

- Physical nature:** solid and hard due to the strong force of attraction. (generally brittle)
- Melting point and boiling point:** have high M.P and B.P, as a large amount of heat energy is required to break strong ionic attraction.
- Solubility:** soluble in water and insoluble in kerosene and petrol.
- Conduction of electricity:** ionic compounds in a solid state do not conduct electricity. (Reason—Ions cannot move due to rigid solid structure.)

Note: Ionic compounds conduct electricity in a molten state. (Reason— Ions can move freely since the electrostatic forces of attraction between the oppositely charged ions are overcome due to heat.)

EXTRACTION OF METALS

Ores: Minerals that contain a very high percentage of a particular metal and these metals can be extracted economically on a large scale.

Example:

- o Bauxite ore \rightarrow Aluminium
- o Hematite ore \rightarrow Iron
- o Magnetite ore \rightarrow Iron
- o Limestone \rightarrow Calcium
- o Gypsum \rightarrow Calcium
- o Bauxite \rightarrow Aluminium
- o Calamine \rightarrow Zinc

Reactivity	Metal	Method of Extraction
Most reactive	Potassium	Extracted by electrolysis of molten compounds
	Sodium	
	Lithium	
	Calcium	
	Magnesium	
	Aluminum	
Carbon		Extracted by reduction, by heating with carbon
Zinc		
Iron		
Copper		
Silver		Found as pure elements in nature
Gold		

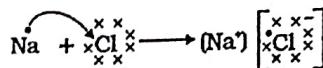
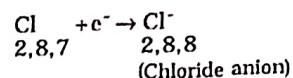
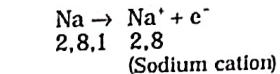
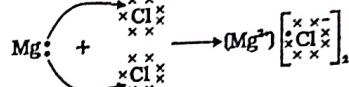
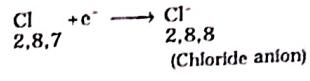
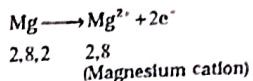
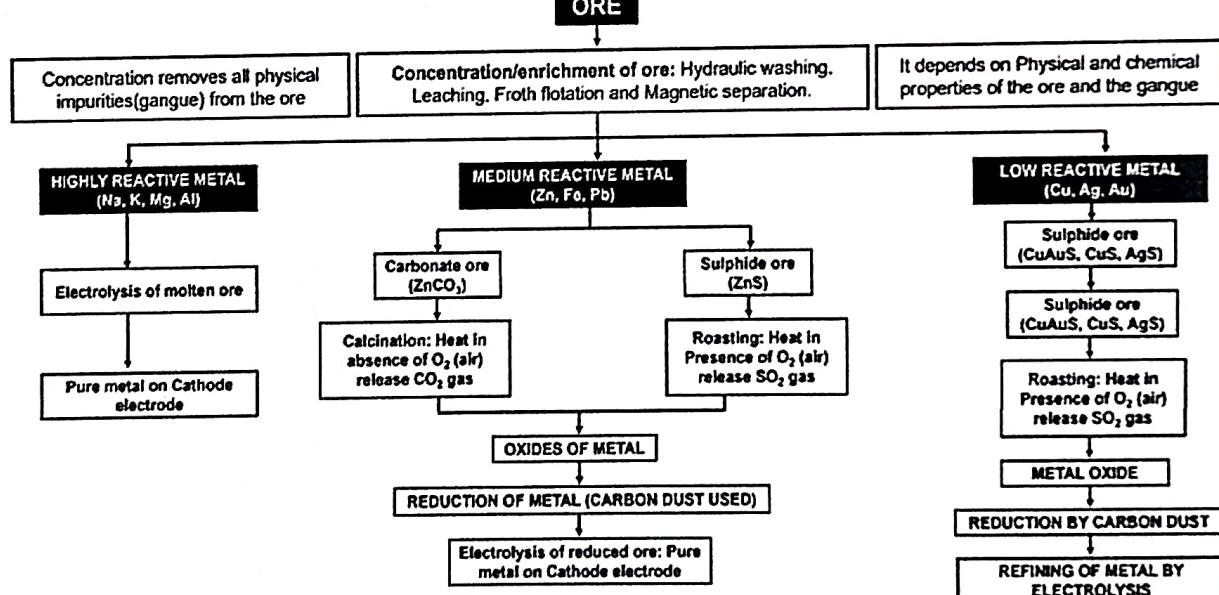
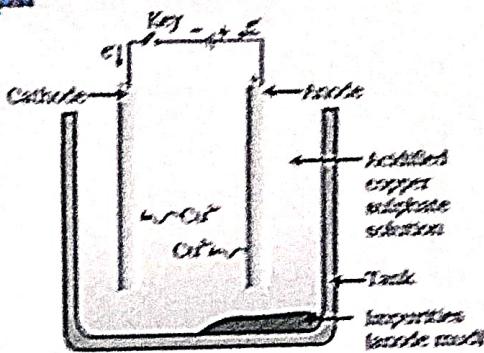




Figure 3.5 Formation of sodium chloride


Figure 3.6 Formation of magnesium chloride

Calcination	Roasting
Calcination is carried out in absence of oxygen.	Roasting is carried out in presence of excess of oxygen.
As a result of calcination, carbonate ore is converted to the oxide.	As a result of roasting the sulphide ore is converted to the oxide.
$\text{ZnCO}_3 \xrightarrow{\text{heat}} \text{ZnO} + \text{CO}_2$	$2\text{ZnS} + 3\text{O}_2 \rightarrow 2\text{ZnO} + 2\text{SO}_2$

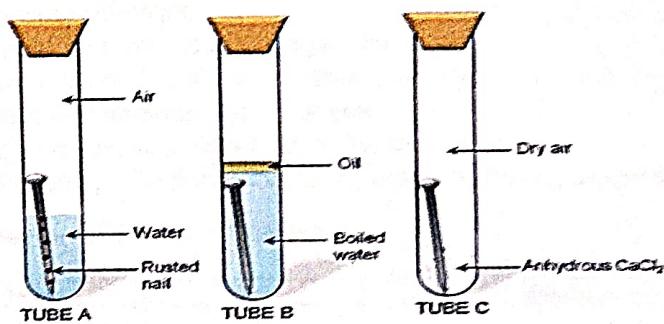
Electrolysis: (ELECTROLYTIC REFINING OF COPPER) [5 MARKS]

1. This is the final process to find the purest form of metal.
2. In a jar/container electrolysis is performed here impure metal (anode) and a strip of pure metal (cathode) are used as electrodes.
3. They are dipped in an electrolytic bath which contains the soluble salt of the same metal.
4. As electricity is passed through the solution, the less basic metal moves towards the anode and leaving the more basic metal in the solution.
5. For example, copper is purified using this method.

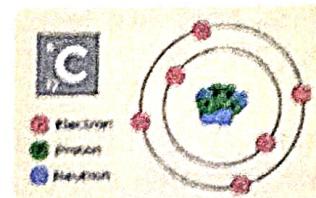
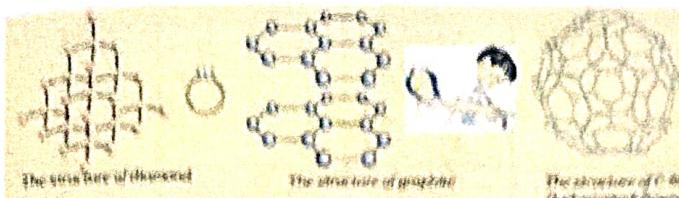
Corrosion: Corrosion is the oxidation of metals.

Examples of corrosion are as follows.

- Blackening of silver (Silver sulphide) $4\text{Ag} + 2\text{H}_2\text{S} + \text{O}_2 \rightarrow 2\text{Ag}_2\text{S} + 2\text{H}_2\text{O}$
- Green layer on copper (Basic Copper carbonate) $2\text{Cu} + \text{O}_2 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{CuCO}_3\text{Cu}(\text{OH})_2$
- The green layer is removed using acidic solutions (Tamarind/vinegar/lemon juice)
- brown flaky substance on iron $4\text{Fe} + 3\text{O}_2 + 6\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_2 + 2\text{Fe}(\text{OH})_3 \rightarrow \text{Fe}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$

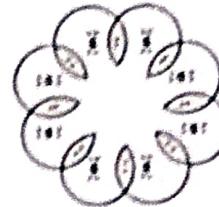

Note: Corrosion of iron also known as Rusting.

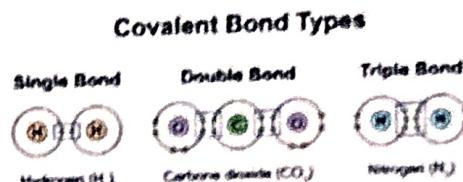
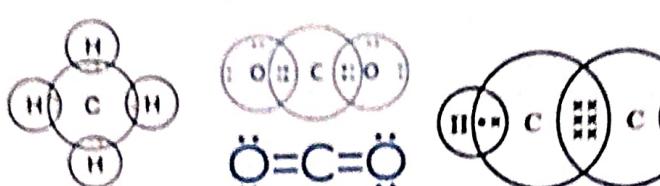
PREVENTION METHODS:



✓ **Galvanization, Oiling/ greasing, Painting, Electroplating, Tinning, using alloys** (Metals are combined to form alloys to enhance properties) (e.g., brass is an alloy of copper and zinc).

Experiment to show that rusting of iron requires both air and water: [3/5 MARKS]

- i) In the test tube iron nail, with un-boiled water in which about two-thirds of the nail is immersed in water and the rest is above the water, exposed to damp air.
- ii) In test tube B containing iron nails, we put boiled distilled water. Boiled distilled water does not contain any dissolved air or oxygen in it.
- iii) A layer of oil is put over boiled water in the test tube to prevent the outside air from mixing with boiled water.
- iv) In test tube C we took an iron nail, put some anhydrous calcium chloride, and closed its mouth with a tight cork.
- v) The anhydrous calcium chloride is added to absorb water or moisture from the damp air present in the test tube and make it dry.
- vi) The mouth of this test tube is closed with a cork and it is kept aside for about a week.
- vii) This shows that rusting of iron takes place in the presence of air and water.

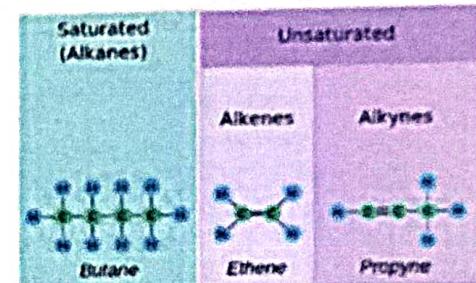

CH.4. CARBON AND ITS COMPOUNDS



4.1 BONDING IN CARBON – THE COVALENT BOND

The reactivity of elements is explained as their tendency to attain a **filled outer shell**, that is, attain noble gas configuration. In elements forming **ionic compounds** **Stability achieved this by either gaining or losing electrons** from the outermost shell. If carbon follows this:

- To gain four electrons forming C^{4-} anion. (difficult for the nucleus with six protons to hold on to ten electrons)
- To lose four electrons forming C^{4+} cation. (Require a large amount of energy to remove four electrons leaving behind a carbon cation with six protons in its nucleus holding on to just two electrons.)

Carbon solves the problem by **SHARING ELECTRON** or **COVALENCY**.



Properties of Covalently bonded Molecules :

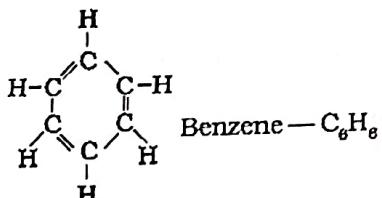
- Strong intramolecular bonding but weak intermolecular bonding. So Low Melting and Boiling point.
- Poor conductor of electricity as electrons are shared between atoms and no charged particles are formed

4.2 VERSATILE NATURE OF CARBON

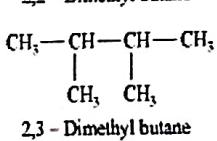
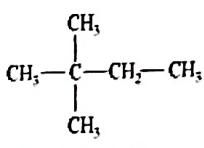
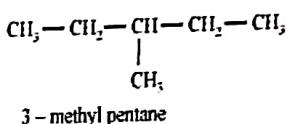
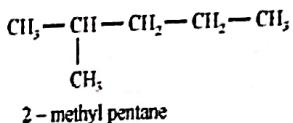
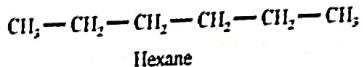
- Catenation:** Carbon has the unique ability to form bonds with other atoms of carbon, giving rise to large molecules. This property is called catenation.
- Tetravalency:** carbon has a valency of four, it is capable of bonding with four other atoms of carbon or atoms of some other mono-valent element.
- Compounds of carbon are formed with oxygen, hydrogen, nitrogen, Sulphur, chlorine, and many other elements giving rise to compounds with specific properties
- Small Size:** enables the nucleus to hold on to the shared pairs of electrons strongly. The bonds formed by elements having bigger atoms are much weaker.

4.2.1 Saturated and Unsaturated Carbon Compounds

Alkane		Alkene		Alkyne	
$\text{C}_n\text{H}_{2n+2}$		C_nH_{2n}		$\text{C}_n\text{H}_{2n-2}$	
Homologous series		Homologous series		Homologous series	
Name	Formula	Name	Formula	Name	Formula
Methane	CH_4	Ethane	C_2H_6	Ethyne	C_2H_2
Ethane	C_2H_6	Propene	C_3H_6	Propyne	C_3H_4
Propane	C_3H_8	Butene	C_4H_8	Butyne	C_4H_6
Butane	C_4H_{10}	Pentene	C_5H_{10}	Pentyne	C_5H_6
Pentane	C_5H_{12}	Hexane	C_6H_{14}	Hexyne	C_6H_{10}
Hexane	C_6H_{14}				


Saturated Hydrocarbon	Unsaturated Hydrocarbon
1. In these compounds, there is a single bond between carbon atoms.	In these compounds, there is a double or triple bond between carbon atoms.
2. They give a clean flame on heating.	They give yellow flame with a lot of black smoke on burning.
3. On burning, saturated hydrocarbons give a clean flame.	On burning, unsaturated hydrocarbons give yellow flame with lots of black smoke.

HOMOLOGOUS SERIES






Number of Carbons	Prefix	Suffix	Structural Formula	Molecular Formula
1	Meth-	ane	$\text{H}-\text{C}-\text{H}$	C_2H_6
2	Eth-	ane	$\text{H}-\text{C}-\text{C}-\text{H}$	C_3H_8
3	Prop-	ane	$\text{H}-\text{C}-\text{C}-\text{C}-\text{H}$	C_4H_{10}
4	But-	ane	$\text{H}-\text{C}-\text{C}-\text{C}-\text{C}-\text{H}$	C_5H_{12}
5	Pent-	ane	$\text{H}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{H}$	C_6H_{14}
6	Hex-	ane	$\text{H}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{H}$	C_7H_{16}
7	Hept-	ane	$\text{H}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{H}$	C_8H_{18}
8	Oct-	ane	$\text{H}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{C}-\text{H}$	

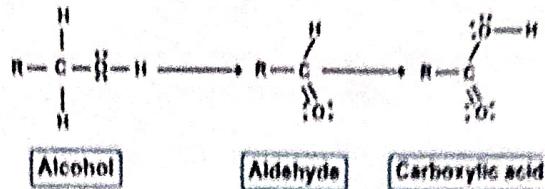
1. A homologous series is a group of organic compounds that have similar structural features and chemical properties.

2. These compounds share the same functional group and differ in $-\text{CH}_2-$

Class	Functional Group	General Formula	Prefix	Suffix	IUPAC Name
Carboxylic acid	$\begin{array}{c} \text{O} \\ \\ -\text{C}-\text{OH} \end{array}$	$\begin{array}{c} \text{O} \\ \\ \text{R}-\text{C}-\text{OH} \\ (\text{R}=\text{C}_n\text{H}_{2n+1}) \end{array}$	Carboxy	-oic acid	Alkanoic acid
Ester	$\begin{array}{c} \text{O} \\ \\ -\text{C}-\text{OR} \end{array}$	$\begin{array}{c} \text{O} \\ \\ \text{R}-\text{C}-\text{O}-\text{R}' \\ (\text{R} \neq \text{R}') \end{array}$	Carbalkoxy	Alkyl (r) -oate	Alkyl alkanoate
Aldehyde	$-\text{CHO}$	$\text{R}-\text{CHO}$	Formyl or oxo	-al	Alkanal
Ketone	$\begin{array}{c} -\text{C}- \\ \\ \text{O} \end{array}$	$\begin{array}{c} \text{R}-\text{C}-\text{R} \\ \\ \text{O} \end{array}$	oxo	-one	Alkanal
Alcohol	$-\text{OH}$	$\text{R}-\text{OH}$	Hydroxy	-ol	Alkanol
Alkenes	$\text{C}=\text{C}$	C_nH_{2n}	-	-ene	Alkene
Alkynes	$\text{C}\equiv\text{C}$	$\text{C}_n\text{H}_{2n-2}$	-	-yne	Alkene
Halides	$-\text{X}$ ($\text{X} = \text{F, Cl, Br, I}$)	$\text{R}-\text{X}$	Halo	-	Haloalkane

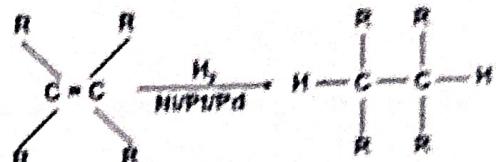
Nomenclature of Carbon Compounds

- Identify the Parent chain
- Low Count to carbon-containing Functional Group.
- Give appropriate Prefixes and Suffixes.

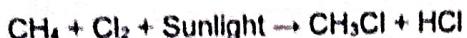

4.3 CHEMICAL PROPERTIES OF CARBON COMPOUNDS

COMBUSTION

Carbon compounds can burn in the presence of oxygen to produce carbon dioxide (CO_2) and water vapour (H_2O), along with the release of energy in the form of heat and sometimes light.


- $\text{C} + \text{O}_2 \rightarrow \text{CO}_2 + \text{heat and light}$
- $\text{CH}_4 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{heat and light}$
- $\text{CH}_3\text{CH}_2\text{OH} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{heat and light}$

OXIDATION :


ADDITION REACTIONS

1. Unsaturated carbon compounds, such as alkenes and alkynes, can participate in addition reactions.
2. These reactions involve the addition of atoms or groups of atoms to the carbon-carbon double or triple bonds.

SUBSTITUTION REACTIONS

1. In substitution reactions, one or more hydrogen atoms in a molecule are replaced by different atoms or groups of atoms.
2. Saturated hydrocarbons (alkanes) are known for their substitution reactions. For instance, when methane (CH_4) reacts with chlorine (Cl_2) in the presence of sunlight, it undergoes a substitution reaction to form chloromethane (CH_3Cl) and hydrogen chloride (HCl).

SOME IMPORTANT COMPOUNDS

Ethanol (Physical properties)	Ethanoic acid (Physical properties)
(i) It has very low melting point (156 K) and low boiling point (351 K).	(i) It has moderate melting point (290 K) and boiling point (391 K).
(ii) It has a burning taste.	(ii) It has a sour taste.
(iii) It has a distinct smell.	(iii) It has a pungent smell.
Chemical properties	Chemical properties
(i) It is neutral in nature and thus, it does not turn blue litmus to red or vice-versa.	(i) It is acidic in nature and turns blue litmus to red.
(ii) Ethanol does not react with Na_2CO_3 or NaHCO_3 .	(ii) Ethanoic acid reacts with Na_2CO_3 or NaHCO_3 to give brisk effervescence of CO_2 gas.
$\text{C}_2\text{H}_5\text{OH} + \text{Na}_2\text{CO}_3 \rightarrow \text{No reaction}$	$2\text{CH}_3\text{COOH} + \text{Na}_2\text{CO}_3 \rightarrow 2\text{CH}_3\text{COONa} + \text{CO}_2 \uparrow + \text{H}_2\text{O}$

ETHANOL : Physical State: Ethanol is a clear, colourless, and volatile liquid at room temperature, relatively low melting point and boiling point, which allows it to exist as a liquid under normal conditions.

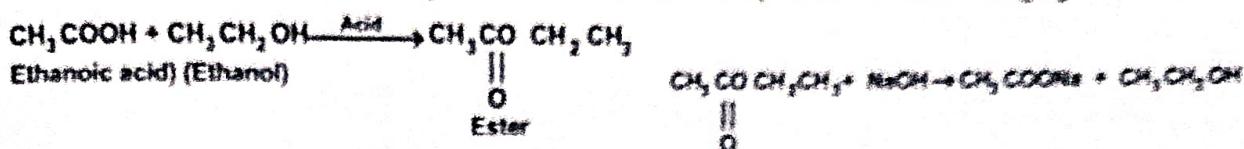
1. Solubility: Ethanol is highly soluble in water, and it can mix with water in all proportions.
2. Medical Uses: Ethanol is used in medicines such as tincture iodine, cough syrups, and tonics.
3. REACTIONS :

- The evolution of hydrogen gas is a characteristic test for the presence of ethanol.

$$2\text{Na} + 2\text{CH}_3\text{CH}_2\text{OH} \rightarrow 2\text{CH}_3\text{CH}_2\text{ONa} + \text{H}_2$$
- **Dehydration Reaction:** Heating ethanol at around 443 K with excess concentrated sulfuric acid (H_2SO_4) leads to the dehydration of ethanol, producing ethene ($\text{CH}_2=\text{CH}_2$) and water (H_2O). Concentrated sulfuric acid serves as a dehydrating agent, removing water from ethanol in this reaction.

We see that some substances can add oxygen to others. These substances are known as oxidizing agents.

Alkaline potassium permanganate or acidified potassium dichromate oxidizes alcohols to acids, that is, adding oxygen to the starting material. Hence, they are known as oxidizing agents.

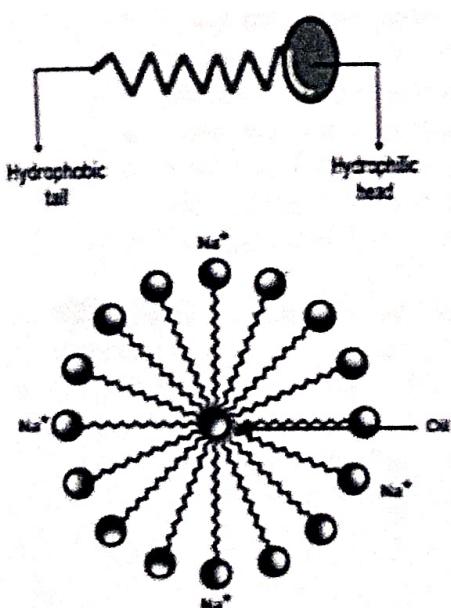

Ethanoic Acid (Acetic Acid): Physical State: Ethanoic acid is a colourless liquid with a strong, pungent smell and a sour taste.

Solubility: soluble in water, and it can mix with water in all proportions. Vinegar-5-7% Solution of Ethanoic acid in water.

- Pure ethanoic acid has a freezing point of 290 K, which can lead to it freezing during cold winters, giving rise to the name "glacial acetic acid."

CHEMICAL REACTIONS:

- Esterification Reaction:** Ethanoic acid can undergo esterification reactions, where it reacts with an alcohol, such as absolute ethanol, in the presence of an acid catalyst to form an ester.
- Esters are often sweet-smelling substances and find use in perfumes and flavouring agents.


- SAPONIFICATION:** When treated with sodium hydroxide (NaOH), an alkali, esters can be converted back to alcohol and the sodium salt of the carboxylic acid.

- For sodium carbonate: $2\text{CH}_3\text{COOH} + \text{Na}_2\text{CO}_3 \rightarrow 2\text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CO}_2$
- For sodium hydrogen carbonate: $\text{CH}_3\text{COOH} + \text{NaHCO}_3 \rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CO}_2$

a. Soaps & Detergents

S. No.	Soaps	Detergents
1	These are bio-degradable	They are mostly non-bio-degradable
2	These do not work in hard water	They can be used even in hard water
3	The cleansing action of soaps is weak	The cleansing action of detergents is strong
4	These are Na or K salts of long chain fatty acids	They are Na salts of long-chain benzene sulphonic acid

Cleansing action of SOAP

- Soaps work by forming structures called **micelles** in water.
- Micelles are spherical aggregates of soap molecules in which the hydrocarbon tails are directed inward and the ionic heads are directed outward, surrounded by water molecules.
- When you wash something with soap, the **hydrophobic tails of soap molecules attach to oil and grease (dirt) on the surface**, while the hydrophilic heads remain in contact with water.
- This allows the dirt to be lifted off the surface and rinsed away with water.

Differentiate between

b. Addition & Substitution Reaction

S. No.	Addition Reaction	Substitution Reaction
1	Reactions in which an unsaturated compound combines with some other substance to give a single product	Reactions in which one or more hydrogen atoms of a hydrocarbon are replaced with some other atom or group to give a single product
2	It is the property of unsaturated hydrocarbons	It is the property of saturated hydrocarbons
3	Example – Ethene on the addition of hydrogen forms Ethane	Example – Ethane on chlorination forms Chloro-ethane

c. Saturated & Unsaturated Hydrocarbons

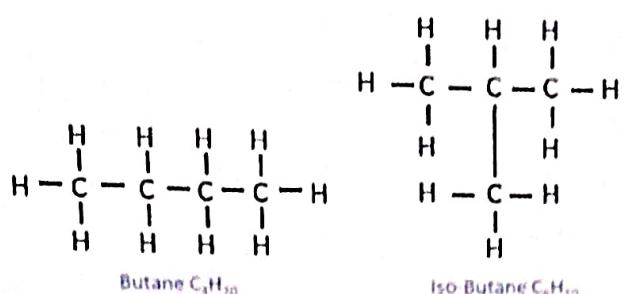
S. No.	Saturated Hydrocarbons	Unsaturated Hydrocarbons
1	Hydrocarbons in which all the carbon atoms are linked by a single bond only	Hydrocarbons in which all the carbon atoms are linked by double or triple bonds
2	Those include alkanes	Those include alkenes & alkynes
3	Example – Methane, Ethane, Propane etc.	Example – Ethene, Propene, Ethyne, Propyne etc.

Properties of covalent compounds:

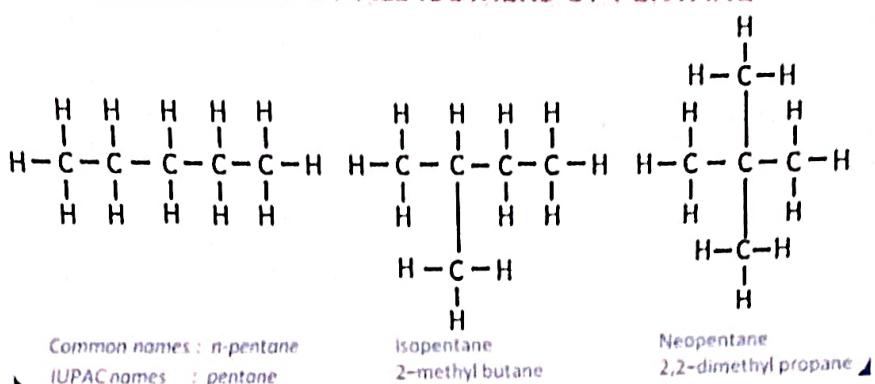
1. They exist in solids, liquids, and gaseous states
2. Low melting and boiling points
3. Do not conduct electricity due to the absence of free electrons
4. Soluble in non-polar solvents

o Important characteristics of Homologous series are:

1. Have the same general formula.
2. Belong to the same functional group.
3. Have similar general methods of separation.
4. Have similar chemical properties.
5. Show similar gradation of physical properties. e.g. boiling points of alcohol increase with the increase in their molecular weights.
6. Similarly, solubility decreases with increase in molecular weights.


o **ISOMERS:** Compounds with identical molecular formulas but different structures are called structural isomers.

o With the increase in the number of carbon atoms in a molecular formula leads to an increase in the number of isomers


n Butane, Iso Butane are isomers of Butane

n Pentane, Iso Pentane and neo-Pentane are isomers of Pentane

Structural isomers of Butane (C_4H_{10})

STRUCTURES OF ALL ISOMERS OF PENTANE

Glossary:

Term	Explanation
Catenation	The ability of an atom to form bonds with itself
Isomerism	Phenomenon in which compounds have the same molecular formula but different structural formula
Homologous Series	Group of organic compounds having same functional group and they differ by $-CH_2$ group.
Hydrogenation	Addition of Hydrogen to an unsaturated hydrocarbon to get a saturated hydrocarbon
Oxidizing Agent	The substance which gives Oxygen for oxidation
Hydrocarbon	Compounds of Carbon and Hydrogen
Functional Group	An atom or a group of atoms joined together for the characteristic chemical properties of the organic compound.
Saturated Hydrocarbon	Hydrocarbon has a single covalent bond. Example – Alkanes.
Unsaturated Hydrocarbon	Hydrocarbons have double or triple covalent bonds. Example – Alkenes, Alkynes.
Micelles	A cluster of soap molecules with a tiny droplet of oil/ fat

Preparation is the key to success.