LOYAL EDUCATION

MATHEMATICS

Result Oriented

(NEET & JEE MAINS)

STATISTICS

MEAN

1. Formula to find mean when individual observations x_1 , x_2 , x_3 , ... x_n (ungrouped data) are given is

$$Mean = \frac{sum of observations}{Total number of observations}$$

$$X = \frac{x1 + x2 + x3 + \dots + xn}{n}$$

$$X = \frac{\Sigma x1}{n}$$

2. Formula to find mean when observations $x_1, x_2, x_3, ... x_n$ along with the corresponding frequencies $f_1, f_2, f_3, ... f_n$ are given (grouped data) is $M_{QGR} = \frac{\text{sum of product of frequencies along with corresponding observations}}{\text{sum of product of frequencies along with corresponding observations}}$

$$Mean = \frac{\frac{\text{Sum of frequencies along with corresponding observations}}{\text{Sum of frequencies}}}{X = \frac{\frac{\text{f1x1} + \text{f2x2} + \text{f3x3} + \dots + \text{fnxn}}{\text{f1+f2+f3+......+fn}}}{f1+f2+f3+.....+fn}}{X = \frac{\frac{\Sigma \text{ f1x1}}{\Sigma \text{f1}}}{\Sigma \text{f1}}}{\text{Note: finding mean using this formula is called Direct method)}}$$

3. Formula to find mean when class interval are given (grouped data with C.I)

$$X = a + \frac{h}{N} (\Sigma f 1 a 1)$$
 (Note: finding mean using this formula is called Step deviation).

- * a → Assumed mean
- * $h \rightarrow Class size (length or width of the class)$
- * $ui \rightarrow xi-a/h$, where xi a = di (deviation)
- * N → Sum of frequencies

4. Formula to find mean by using Assumed mean (or) shortcut method X = a + 1/N (Σ fidi)

- * a → Assumed mean
- * di = xi-a (deviation)
- * N → Sum of frequencies

LOYAL EDUCATION

MATHEMATICS

Result Oriented

(NEET & JEE MAINS)

Median

* Formula to find median when individual observations x_1 , x_2 , x_3 , ..., x_n (ungrouped data) are given is

<u>Case I</u>: If n = odd => M = ((n+1)/2)th observation

<u>Case II</u>: If $n = \text{even} = > M = \frac{\left(\frac{n}{2}\right)th\ observation + \left(\frac{n}{2} + 1\right)th\ observation}{2}$

* Formula to find median when observations (x_i) along with corresponding frequencies (f_i) are given is

M= the observation opposite to the cumulative frequency which is just greater than N/2 value

* Formula to find median when class intervals (grouped data) are given

M = l + ((n/2 - cf)/f) * h; where

f => Median frequency (opposite to median class)

cf => Cummulative frequency just preceeding the median frequency

l => Lower unit of the median class

N => Sum of all frequencies

h => Class size (length of the class)

Mode

* Formula to find Mode when individual observations (ungrouped data) are given is

Mode (Z) = 'The observation' which occurs most frequently.

* Formula to find Mode when class intervals (grouped data) are given is Mode (Z) = $l + ((f_1-f_0)/(2f_1-f_0-f_2))$ * h

 $f_1 => Modal$ frequency (highest frequency).

 $f_0 =>$ Frequency just preceding modal frequency.

 $f_2 =>$ Frequency just succeeding modal frequency.

l => lower limit of the modal frequency.

h => class size.

* EMPHERICAL Relation between Mean, Median and Mode is given by $Mode(Z) = 3Median(M) - 2Mean(\bar{x})$